Skip to main content

Unidirectional trends in annual and seasonal climate and extremes in Egypt

Abstract

The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948–2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08–0.29 °C/decade) much faster compared to maximum temperature (0.07–0.24 °C/decade) and therefore, a decrease in diurnal temperature range (− 0.01 to − 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aadhar S, Mishra V (2017) High-resolution near real-time drought monitoring in South Asia. Sci Data 4:170145. https://doi.org/10.1038/sdata.2017.145

    Article  Google Scholar 

  2. Ahmed K, Shahid S, Chung E-S, Ismail T, Wang X-J (2017) Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim Res 74:95–107

    Article  Google Scholar 

  3. Aich V et al (2017) Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)—South Asia simulations. Climate 5:38. https://doi.org/10.3390/cli5020038

    Article  Google Scholar 

  4. Aloysius N, Saiers J (2017) Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin. Hydrol Earth Syst Sci 21:4115–4130. https://doi.org/10.5194/hess-21-4115-2017

    Article  Google Scholar 

  5. Awange JL, Mpelasoka F, Goncalves RM (2016) When every drop counts: analysis of droughts in Brazil for the 1901–2013 period. Sci Total Environ 566:1472–1488. https://doi.org/10.1016/j.scitotenv.2016.06.031

    Article  Google Scholar 

  6. Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Chang 6:151–169. https://doi.org/10.1002/wcc.316

    Article  Google Scholar 

  7. Braganza K, Karoly D, Hirst A, Mann M, Stott P, Stouffer R, Tett S (2003) Simple indices of global climate variability and change: part I—variability and correlation structure. Clim Dyn 20:491–502

    Article  Google Scholar 

  8. Cardil A, Salis M, Spano D, Delogu G, Molina Terrén D (2014) Large wildland fires and extreme temperatures in Sardinia (Italy). iForest Biogeosci For 7:162–169. https://doi.org/10.3832/ifor1090-007

    Article  Google Scholar 

  9. Chiew FH (2006) An overview of methods for estimating climate change impact on runoff. In: 30th Hydrology & Water Resources Symposium: past, present & future. Conference Design, p. 643

  10. Chu P-S, Wang J-B (1997) Recent climate change in the tropical Western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. J Clim 10:636–646. https://doi.org/10.1175/1520-0442(1997)010<0636:rccitt>2.0.co;2

    Article  Google Scholar 

  11. Domroes M, El-Tantawi A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63. https://doi.org/10.1002/joc.1114

    Article  Google Scholar 

  12. Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci Total Environ 573:1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213

    Article  Google Scholar 

  13. Dutta S, Chaudhuri G (2015) Evaluating environmental sensitivity of arid and semiarid regions in northeastern Rajasthan, India. Geogr Rev 105:441–461. https://doi.org/10.1111/j.1931-0846.2015.12093.x

    Article  Google Scholar 

  14. Ehsanzadeh E, Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence. Hydrol Process 24:970–980. https://doi.org/10.1002/hyp.7533

    Article  Google Scholar 

  15. Elmallah ES, Elsharkawy SG (2011) Influence of circulation indices upon winter temperature variability in Egypt. J Atmos Sol Terr Phys 73:439–448. https://doi.org/10.1016/j.jastp.2010.10.013

    Article  Google Scholar 

  16. Elnazer AA, Salman SA, Asmoay AS (2017) Flash flood hazard affected Ras Gharib City, Red Sea, Egypt: a proposed flash flood channel. Nat Hazards 89:1389–1400. https://doi.org/10.1007/s11069-017-3030-0

    Article  Google Scholar 

  17. Fathian F, Aliyari H, Kahya E, Dehghan Z (2016) Temporal trends in precipitation using spatial techniques in GIS over Urmia Lake Basin, Iran. Int J Hydrol Sci Technol 6:62–81

    Article  Google Scholar 

  18. Griffiths JF (1966) Applied climatology: an introduction

  19. Hafez YY, Almazroui M (2016) Study of the relationship between African ITCZ variability and an extreme heat wave on Egypt in summer 2015. Arab J Geosci 9:1–17. https://doi.org/10.1007/s12517-016-2497-4

    Article  Google Scholar 

  20. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009

    Article  Google Scholar 

  21. Hamed KH (2009) Exact distribution of the Mann–Kendall trend test statistic for persistent data. J Hydrol 365:86–94. https://doi.org/10.1016/j.jhydrol.2008.11.024

    Article  Google Scholar 

  22. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  23. Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999. https://doi.org/10.1002/joc.1043

    Article  Google Scholar 

  24. Hasanean HM, Basset HA (2006) Variability of summer temperature over Egypt. Int J Climatol 26:1619–1634. https://doi.org/10.1002/joc.1321

    Article  Google Scholar 

  25. Hereher ME (2016) Time series trends of land surface temperatures in Egypt: a signal for global warming. Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-6024-4

  26. Iliopoulou T, Papalexiou SM, Markonis Y, Koutsoyiannis D (2016) Revisiting long-range dependence in annual precipitation. J Hydrol 556:891–900. https://doi.org/10.1016/j.jhydrol.2016.04.015

    Article  Google Scholar 

  27. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability—part B: regional aspects—contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi:citeulike-article-id:13497155

  28. Karoly DJ, Braganza K, Stott PA, Arblaster JM, Meehl GA, Broccoli AJ, Dixon KW (2003) Detection of a human influence on North American climate. Science 302:1200–1203

    Article  Google Scholar 

  29. Kendall MG (1948) Rank correlation methods

  30. Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24. https://doi.org/10.1623/hysj.48.1.3.43481

    Article  Google Scholar 

  31. Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. https://doi.org/10.1016/j.jhydrol.2009.06.012

    Article  Google Scholar 

  32. Lacombe G, Hoanh CT, Smakhtin V (2012) Multi-year variability or unidirectional trends? Mapping long-term precipitation and temperature changes in continental Southeast Asia using PRECIS regional climate model. Clim Chang 113:285–299. https://doi.org/10.1007/s10584-011-0359-3

    Article  Google Scholar 

  33. Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260. https://doi.org/10.1007/s10584-016-1665-6

    Article  Google Scholar 

  34. Ludescher J, Bunde A, Franzke CLE, Schellnhuber HJ (2016) Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Clim Dyn 46:263–271. https://doi.org/10.1007/s00382-015-2582-5

    Article  Google Scholar 

  35. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  36. Markonis Y, Koutsoyiannis D (2013) Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch cycles with Hurst–Kolmogorov. Dyn Surv Geophys 34:181–207. https://doi.org/10.1007/s10712-012-9208-9

    Article  Google Scholar 

  37. Markonis Y, Batelis SC, Dimakos Y, Moschou E, Koutsoyiannis D (2017) Temporal and spatial variability of rainfall over Greece. Theor Appl Climatol 130:217–232. https://doi.org/10.1007/s00704-016-1878-7

    Article  Google Scholar 

  38. McLeod AI, Hipel KW (1978) Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon. Water Resour Res 14:491–508. https://doi.org/10.1029/WR014i003p00491

    Article  Google Scholar 

  39. MWRI (2005) Water for the future. National Water Resources Plan 2017. Ministry of Water Resources and Irrigation

  40. Niero M, Ingvordsen CH, Peltonen-Sainio P, Jalli M, Lyngkjær MF, Hauschild MZ, Jørgensen RB (2015) Eco-efficient production of spring barley in a changed climate: a life cycle assessment including primary data from future climate scenarios. Agric Syst 136:46–60. https://doi.org/10.1016/j.agsy.2015.02.007

    Article  Google Scholar 

  41. Onyutha C, Willems P (2017) Influence of spatial and temporal scales on statistical analyses of rainfall variability in the River Nile basin. Dyn Atmos Oceans 77:26–42. https://doi.org/10.1016/j.dynatmoce.2016.10.008

    Article  Google Scholar 

  42. Onyutha C, Tabari H, Taye MT, Nyandwaro GN, Willems P (2016) Analyses of rainfall trends in the Nile River basin. J Hydro Environ Res 13:36–51. https://doi.org/10.1016/j.jher.2015.09.002

    Article  Google Scholar 

  43. Orth R, Zscheischler J, Seneviratne SI (2016) Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci Rep 6:28334. https://doi.org/10.1038/srep28334

    Article  Google Scholar 

  44. Pour SH, Harun SB, Shahid S (2014) Genetic programming for the downscaling of extreme rainfall events on the East Coast of Peninsular Malaysia. Atmosphere 5:914–936. https://doi.org/10.3390/atmos5040914

    Article  Google Scholar 

  45. Ragab O, Negm A (2017) Trend analysis of precipitation data: a case study of Blue Nile Basin, Africa 56. https://doi.org/10.1007/698_2016_114

  46. Rishmawi K, Prince S, Xue Y (2016) Vegetation responses to climate variability in the northern arid to sub-humid zones of sub-Saharan Africa. Remote Sens 8:910. https://doi.org/10.3390/rs8110910

    Article  Google Scholar 

  47. Roushdi M, Mostafa H, Kheireldin K (2016) Present and future climate extreme indices over Sinai Peninsula, Egypt. Int J Environ Chem Ecol Geol Geophys Eng 109:85–90

    Google Scholar 

  48. Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017a) Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pac J Atmos Sci 53:489–500. https://doi.org/10.1007/s13143-017-0051-2

    Article  Google Scholar 

  49. Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017b) Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-017-0564-3

  50. Salguero-Gómez R, Siewert W, Casper BB, Tielbörger K (2012) A demographic approach to study effects of climate change in desert plants. Philos Trans R Soc B Biol Sci 367:3100–3114. https://doi.org/10.1098/rstb.2012.0074

    Article  Google Scholar 

  51. Salman SA, Shahid S, Ismail T, Chung E-S, Al-Abadi AM (2017) Long-term trends in daily temperature extremes in Iraq. Atmos Res 198:97–107. https://doi.org/10.1016/j.atmosres.2017.08.011

    Article  Google Scholar 

  52. Seager R, Naik N, Baethgen W, Robertson A, Kushnir Y, Nakamura J, Jurburg S (2010) Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J Clim 23:5517–5539

    Article  Google Scholar 

  53. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  54. Serra C, Burgueño A, Martínez MD, Lana X (2006) Trends in dry spells across Catalonia (NE Spain) during the second half of the 20th century. Theor Appl Climatol 85:165–183. https://doi.org/10.1007/s00704-005-0184-6

    Article  Google Scholar 

  55. Shahid S (2009) Spatio-temporal variability of rainfall over Bangladesh during the time period 1969-2003. Asia-Pac J Atmos Sci 45:375–389

    Google Scholar 

  56. Shahid S (2010) Probable impacts of climate change on public health in Bangladesh. Asia-Pac J Public Health 22:310–319. https://doi.org/10.1177/1010539509335499

    Article  Google Scholar 

  57. Shahid S (2011) Trends in extreme rainfall events of Bangladesh. Theor Appl Climatol 104:489–499. https://doi.org/10.1007/s00704-010-0363-y

    Article  Google Scholar 

  58. Shahid S, Harun SB, Katimon A (2012) Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmos Res 118:260–270. https://doi.org/10.1016/j.atmosres.2012.07.008

    Article  Google Scholar 

  59. Shahid S, Wang XJ, Harun S (2014) Unidirectional trends in rainfall and temperature of Bangladesh. In: IAHS-AISH Proceedings and Reports. pp 177–182

  60. Shahid S, Hadi PS, Xiaojun W, Ahmed SS, Anil M, bin IT (2017) Impacts and adaptation to climate change in Malaysian real estate. Int J Clim Chang Strateg Manag 9:87–103. https://doi.org/10.1108/IJCCSM-01-2016-0001

    Article  Google Scholar 

  61. Shaltout M, El Gindy A, Omstedt A (2013) Recent climate trends and future scenarios along the Egyptian Mediterranean coast. Geofizika 30:19–41

    Google Scholar 

  62. Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J Geophys Res Atmos 112:n/a-n/a. https://doi.org/10.1029/2006JD008288

  63. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological Forcings for land surface modeling. J Clim 19:3088–3111. https://doi.org/10.1175/jcli3790.1

    Article  Google Scholar 

  64. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435. https://doi.org/10.1038/nature11575

    Article  Google Scholar 

  65. Shourav MSA, Shahid S, Singh B, Mohsenipour M, Chung E-S, Wang X-J (2017) Potential impact of climate change on residential energy consumption in Dhaka City. Environ Model Assess 23:131–140. https://doi.org/10.1007/s10666-017-9571-5

    Article  Google Scholar 

  66. Sillmann J, Kharin V, Zwiers F, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  67. Su BD, Jiang T, Jin WB (2006) Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor Appl Climatol 83:139–151. https://doi.org/10.1007/s00704-005-0139-y

    Article  Google Scholar 

  68. Tyralis H (2016) HKprocess: Hurst-Kolmogorov process. R package version 0.0-2

  69. Wang X-j, Zhang J-y, Shahid S, Guan E-h, Wu Y-x, Gao J, He R-m (2016) Adaptation to climate change impacts on water demand. Mitig Adapt Strateg Glob Chang 21:81–99. https://doi.org/10.1007/s11027-014-9571-6

    Article  Google Scholar 

  70. Weisheimer A, Schaller N, O’Reilly C, MacLeod DA, Palmer T (2017) Atmospheric seasonal forecasts of the twentieth century: multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Q J R Meteorol Soc 143:917–926

    Article  Google Scholar 

  71. WMO (2016) Provisional WMO statement on the status of the global climate in 2016

  72. Woollings T, Franzke C, Hodson D, Dong B, Barnes EA, Raible C, Pinto J (2015) Contrasting interannual and multidecadal NAO variability. Clim Dyn 45:539–556

    Article  Google Scholar 

  73. Wu C, Hu BX, Huang G, Zhang H (2017) Effects of climate and terrestrial storage on temporal variability of actual evapotranspiration. J Hydrol 549:388–403. https://doi.org/10.1016/j.jhydrol.2017.04.012

    Article  Google Scholar 

  74. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 38

  75. Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218. https://doi.org/10.1023/B:Warm.0000043140.61082.60

    Article  Google Scholar 

  76. Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17:1945–1952. https://doi.org/10.1175/1520-0442(2004)017<1945:mceotd>2.0.co;2

    Article  Google Scholar 

  77. Zhu Y, Lin Z, Zhao Y, Li H, He F, Zhai J, Wang L, Wang Q (2017) Flood simulations and uncertainty analysis for the pearl river basin using the coupled land surface and hydrological model system. Water 9:391. https://doi.org/10.3390/w9060391

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universiti Teknologi Malaysia for providing financial support for this research through GUP Grant No. 19H44.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salem Nashwan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nashwan, M.S., Shahid, S. & Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor Appl Climatol 136, 457–473 (2019). https://doi.org/10.1007/s00704-018-2498-1

Download citation