Skip to main content
Log in

A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A lasting decrease in the near-surface wind speed (SWS) in China has been revealed, but a following short-term strengthening in the SWS was rarely noted. In this paper, the daily mean SWS observed datasets from 328 measurement stations in Eastern China during the period 1981–2011 were used to investigate the facts and causes of the observed short-term strengthening in winter SWS in recent decades. The major results are summarized as follows: the SWS showed a significant decrease in the last 30 years, but a short-term strengthening in SWS was observed during the winter since 2000 in Eastern China. The SWS in Eastern China showed a significant decrease of − 0.11 m s−1 decade−1 from 1981 to 1999, followed by a weak increase of 0.0008 m s−1 decade−1 from 2000 to 2011. The short-term strengthening in the SWS since 2000 was mainly induced by the changes of the pressure-gradient force (PGF), which could be attributed to the changes of the sea-level pressure (SLP) in the region (51°–69.75° N, 51.75°–111.75° E). Furthermore, the changes of the PGF during the two periods of 1981–1999 and 2000–2011 were consistent with those of the SLP in the region (51°–69.75° N, 51.75°–111.75° E). The correlation coefficient between PGF and SLP was 0.32 and 0.66 during the period 1981–1999 and 2000–2011, respectively. Therefore, the effects of the changes in SLP over the region (51°–69.75° N, 51.75°–111.75° E) on changes of SWS in the Eastern China should be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Asselen SV, Verburg PH (2013) Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob Chang Biol 19:3648–3667

    Article  Google Scholar 

  • Aziz OIA, Burn DH (2006) Trends and variability in the hydrological regime of the Machenzie River basin. J Hydrol 319(1–4):282–294

    Article  Google Scholar 

  • Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sanchez-Lornzo A, Lopez-Moreno JI, Revuelto J, Trigo RM, Lopez-Bustins JA, Espirito-Santo F (2014) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961-2011. J Clim 27:3692–3712

    Article  Google Scholar 

  • Azorin-Molina C, Guijarro JA, McVicar TR, Vicente-Serrano SM, Chen DL, Jerez S, Espirito-Santo F (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961-2014. J Geophys Res-Atmos 121:1059–1078. https://doi.org/10.1002/2015JD024485

    Article  Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14(14):508–515

    Article  Google Scholar 

  • Berrisford P, Tobin I, Dunn RJH, Vautard R, McVicar TR (2015) [Global climate; atmospheric circulation; surface winds] land surface wind speed [in “State of the climate in 2014”]. Bull Am Meteorol Soc 95(7):S33–S34

    Google Scholar 

  • Bichet A, Wild M, Folini D, Schar C (2012) Causes for decadal variations of speed over land: sensitivity studies with a global climate model. Geophys Res Lett 39:L11701. https://doi.org/10.1029/2012GL051685

    Article  Google Scholar 

  • Birsan MV, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol 314(1–4):312–329

    Article  Google Scholar 

  • China Meteorological Administration (CMA) (2003) Ground surface meteorological observation. China Meteorological Press, Beijing, p 157

    Google Scholar 

  • Clifton A, Lundquist JK (2012) Data clustering reveals climate impacts on local wind phenomena. J Appl Meteorol Climatol 51:1547–1557

    Article  Google Scholar 

  • Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87:367–374

    Article  Google Scholar 

  • Cusack S (2013) A 101 year record of windstorms in the Netherlands. Clim Chang 116:693–704. https://doi.org/10.1007/s10584-012-0527-0

    Article  Google Scholar 

  • Dadaser-Celik F, Cengiz E (2014) Wind speed trends over Turkey from 1975 to 2006. Int J Climatol 34:1913–1927. https://doi.org/10.1002/joc/3810

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dinpashoh Y (2006) Study of reference crop evapotranspiration in I.R. of Iran. Agric Water Manag 84(1):123–129

    Article  Google Scholar 

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh V, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol 399(3):422–433

    Article  Google Scholar 

  • Dinpashoh Y, Mirabbasi R, ASCE SM, Jhajharia D, Abianeh HZ, Mostafaeipour A (2014) Effect of short term and long-term persistence on identification of temporal trends. J Hydrol Eng 19(3):617–625

    Article  Google Scholar 

  • Dunn RJH, Azorin-Molina C, Mears CA, Berrisford P, McVicar TR (2016) Surface winds [in “State of the climate in 2015”]. Bull Am Meteorol Soc 97(8):S38–S40

    Google Scholar 

  • Fu GB, Yu JJ, Zhang YC, Hu SS, Quyang RL, Liu WB (2011) Temporal variation of wind speed in China for 1961-2007. Theor Appl Climatol 104(3):313–324

    Article  Google Scholar 

  • Fujibe F (2009) Relation between long-term temperature and wind speed trends at surface observation stations in Japan. SOLA 5:081–084. https://doi.org/10.2151/sola.2009-021

    Article  Google Scholar 

  • Garcia-Bustamante E, Gonzalez-Rouco JF, Navarro J, Xoplaki E, Jimenez PA, Montavez JP (2012) North Atlantic atmospheric circulation and surface wind in the northeast of the Iberian Peninsula: uncertainty and long term downscaled variability. Clim Dyn 38:141–160. https://doi.org/10.1007/s00382-010-0969-x

    Article  Google Scholar 

  • Greene JS, Chatelain M, Morrissey M, Stadler S (2012) Estimated changes in wind speed and wind power density over the western High Plains, 1971-2000. Theor Appl Climatol 104(3):313–324. https://doi.org/10.1007/s00704-012-0596-z

    Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Changes in near-surface wind speed in China: 1969-2005. Int J Climatol 31:349–358. https://doi.org/10.1002/joc.2091

    Article  Google Scholar 

  • Jiang Y, Luo Y, Zhao ZC, Tao SW (2010) Changes in wind speed over China during 1956-2004. Theor Appl Climatol 99:421–430. https://doi.org/10.1007/s00704-009-0152-7

    Article  Google Scholar 

  • Jerez S, Trigo RM, Vicente-Serrano SM, Pozo-Vazquez D, Lorente-Plazas R, Lorenzo-Lacruz J, Santos-Alamillos F, Montavez JP (2013) The impact of the North Atlantic oscillation on the renewable energy resources in southwestern Europe. J Appl Meteorol Climatol 52:2204–2225. https://doi.org/10.1175/JAMC-D-12-0257.1

    Article  Google Scholar 

  • Karnauskas KB, Lundquist JK, Zhang L (2017) Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat Geosci 11:38–43

    Article  Google Scholar 

  • Kim JC, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn 45:1699–1712. https://doi.org/10.1007/s00382-015-2546-9

    Article  Google Scholar 

  • Klink K (1999a) Climatological mean and inter-annual variance of United States surface wind speed, direction and velocity. Int J Climatol 19:471–488

    Article  Google Scholar 

  • Klink K (1999b) Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Clim Res 13:193–205

    Article  Google Scholar 

  • Klink K (2007) Atmospheric circulation effects on wind speed variability at turbine height. J Appl Meteorol Climatol 46(4):445–456. https://doi.org/10.1175/JAM2466.1

    Article  Google Scholar 

  • Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. https://doi.org/10.1016/j.jhydrol.2009.06.012

    Article  Google Scholar 

  • Li JP, Wu ZW, Jiang ZH, He JH (2010) Can global warming strengthen the East Asian summer monsoon. J Clim 23:6696–6705. https://doi.org/10.1175/2010JCL13434.1

    Article  Google Scholar 

  • Li JP, Feng J, Li Y (2011) A possible cause of decreasing summer rainfall in Northeast Australia. Int J Climatol 32(7):995–1005. https://doi.org/10.1002/joc.2328

    Article  Google Scholar 

  • Lin CG, Yang K, Qin J, Hu Y (2013) Observation coherent trends of surface and upper-air wind speed over China since 1960. J Clim 26:2891–2903

    Article  Google Scholar 

  • Lin CG, Yang K, Huang JP, Tang WJ, Qin J, Niu XL, Chen YY, Chen DL, Lu N, Fu R (2015) Impacts of wind stilling on solar radiation variability in China. Sci Rep 5(5):15135. https://doi.org/10.1038/srep15135

    Article  Google Scholar 

  • Liu XN (2000) The homogeity test on mean annual wind speed over China. Quart J Appl Meteorol 11(1):28–34 (in Chinese)

    Google Scholar 

  • Liu M, Shen YJ, Zeng Y, Liu CM (2010) Trend in pan evaporation and its attribution over the past 50 years in China. J Geogr Sci 20(4):557–568

    Article  Google Scholar 

  • Liu ML, Tian HQ (2010) China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Global Biogeochemical Cycle 24(3):285–286

    Article  Google Scholar 

  • Liu Q, McVicar TR (2012) Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. J Hydrol 464(465):352–362. https://doi.org/10.1016/j.jhydrol.2012.07.032

    Article  Google Scholar 

  • Liu JY, Kuang WH, Zhang ZX, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W (2014) Spatio-temporal characteristics, patterns and causes of land-use changes in China since the late 1980s. J Geogr Sci 24(2):195–210

    Article  Google Scholar 

  • Mastylo M (2013) Bilinear interpolation theorems and applications. J Funct Anal 265(2):185–207. https://doi.org/10.1016/j.jfa.2013.05.001

    Article  Google Scholar 

  • McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331–1363. https://doi.org/10.5194/hessd-10-8781-2013

    Article  Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416(417):182–205. https://doi.org/10.1016/j.jhydrol.2011.10.024

    Article  Google Scholar 

  • Narkhedkar SG, Sinha SK, Mitra AK (2008) Mesoscale objective analysis of daily rainfall with satellite and conventional data over Indian summer monsoon region. Geofizika 25(2):159–178

    Google Scholar 

  • Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate change. J Hydrol 334(3–4):319–333

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Gutowski WJ, Nunes A, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res-Atmos 114(D14):1159–1171. https://doi.org/10.1029/2008JD011416

    Article  Google Scholar 

  • Pryor SC, Ledolter J (2010) Addendum to “Wind speed trends over the contiguous United States”. J Geophys Res Atmos 115(D10):1159–1171. https://doi.org/10.1029/2009JD013281

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficients based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Simmons AJ, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECWMF reanalysis products from 1989 onwards. ECMWF Newsletter 110:25–35

    Google Scholar 

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humility, temperature and precipitation: inferences from reanalysis and monthly gridded observational datasets. J Geophys Res-Atmos 115(D1):1–21. https://doi.org/10.1029/2009JD012442

    Article  Google Scholar 

  • Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C (2014) Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353. https://doi.org/10.1002/qj.2317

    Article  Google Scholar 

  • Sinha SH, Narkhedkar SG, Mitra AK (2006) Barnes objective analysis scheme of daily rainfall over Maharashtra (India) on a mesoscale grid. Atmosfera 19:59–76

    Google Scholar 

  • Thiel H (1950) A rank-invariant method of linear and polynomial analysis, part 3. Ned Akad Wet Proc 53:1397–1412

    Google Scholar 

  • Tobin I, Berrisford P, Dunn RJH, Vautard R, McVicar TR (2014) [Global climate; atmospheric circulation; surface winds] land surface wind speed [in “State of the climate in 2013”]. Bull Am Meteorol Soc 95(7):S28–S29

    Google Scholar 

  • Tuller SE (2004) Measured wind speed trends on the west coast of Canada. Int J Climatol 24:1359–1374. https://doi.org/10.1002/joc.1073

    Article  Google Scholar 

  • Vautard R, Cattiaux JL, Yiou P, Thepaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11):756–761. https://doi.org/10.1038/NGEO979

    Article  Google Scholar 

  • Vautard R, McVicar TR, Thepaut JN, Roderic ML (2012) [Global climate; atmospheric circulation; surface winds] land surface winds and atmospheric evaporative demand [in “State of the climate in 2011”]. Bull Am Meteorol Soc 93(7):S6–S38

    Google Scholar 

  • Wan H, Wang XL, Swail VR (2010) Homogenization and trend analysis of Canadian near-surface wind speeds. J Clim 23(5):1209–1225

    Article  Google Scholar 

  • Wu J, Zha JL, Zhao DM (2016) Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980-2011. Clim Dyn 46:847–863. https://doi.org/10.1007/s00382-015-2616-z

    Article  Google Scholar 

  • Wu J, Zha JL, Zhao DM (2017a) Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Clim Dyn 48(1):131–149. https://doi.org/10.1007/s00382-016-3065-z

    Article  Google Scholar 

  • Wu J, Zha JL, Zhao DM, Yang QD (2017b) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn. https://doi.org/10.1007/s00382-017-3997-y

  • Wu J, Zha JL, Zhao DM, Yang QD (2017c) Effects of surface friction and turbulent mixing on long-term changes in the near-surface wind speed over the Eastern China Plain from 1981 to 2010. Clim Dyn. https://doi.org/10.1007/s00382-017-4012-3

  • Xu M, Chang CP, Fu CB, Qi Y, Robock A, Robinson D, Zhang HM (2006) Steady decline of East Asian monsoon winds, 1969-2000: evidence from direct ground measurements of wind speed. J Geophys Res-Atmos 111:D24111. https://doi.org/10.1029/2006JD007337

    Article  Google Scholar 

  • Yang XM, Li ZX, Feng Q, He YQ, An WL, Zhang W, Cao WH, Yu TF, Wang YM, Theakstone WH (2012) The decreasing wind speed in southwestern China during 1969-2009, and possible causes. Quat Int 263:71–84

    Article  Google Scholar 

  • You QL, Kang SC, Flugel WA, Pepin N, Yan YP, Huang J (2010) Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Clim Res 42:57–64. https://doi.org/10.3354/cr00864

    Article  Google Scholar 

  • Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 38(6):1068–14-7. https://doi.org/10.1029/2001WR000861

    Article  Google Scholar 

  • Zha JL, Wu J, Zhao DM (2016) Changes of probabilities in different wind grades induced by land use and cover change in Eastern China Plain during 1980-2011. Atmos Sci Lett 17:264–269. https://doi.org/10.1002/asl.653

    Article  Google Scholar 

  • Zha JL, Wu J, Zhao DM (2017a) Effects of land use and cover change on the near-surface wind speed over China in the last 30 years. Prog Phys Geogr 41:46–67. https://doi.org/10.1177/0309133316663097

    Article  Google Scholar 

  • Zha JL, Wu J, Zhao DM, Yang QD (2017b) Changes of the probabilities in different ranges of near-surface wind speed in China during the period for 1970–2011. J Wind Eng Ind Aerodyn 169:156–167. https://doi.org/10.1016/j.jweia.2017.07.019

    Article  Google Scholar 

  • Zhu J, Liao H, Li J (2012) Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett 39(9):L09809. https://doi.org/10.1029/2012GL051428

    Google Scholar 

Download references

Acknowledgements

The authors cordially thank the reviewers for their thorough comments and constructive suggestions, which improve the paper quality significantly. Daily meteorological data is available from the China Meteorological Data Sharing Service System, and the ERA-Interim dataset comes from the ECMWF. We thank all the dataset providers. This study was sponsored by the Chinese Natural Science Foundation (41675149, 41775087), the National Key Research and Development Program of China (2016YFA0600403), and the Yunnan Province Education Department Project (2017YJS106). The paper was also supported by the Program for Key Laboratory in University of Yunnan Province, the Chinese Jiangsu Collaborative Innovation Center for Climate Change, and the Young Scholar of Distinction for Doctoral Candidate of Yunnan Province in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, J., Wu, J., Zhao, D. et al. A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes. Theor Appl Climatol 136, 119–134 (2019). https://doi.org/10.1007/s00704-018-2471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2471-z

Navigation