Abstract
New decision support tools for Portuguese viticulture are urging under a climate change context. In the present study, heat and chilling accumulation conditions of a collection of 44 grapevine cultivars currently grown in Portugal are assessed at very high spatial resolution (~ 1 km) and for 1981–2015. Two bioclimatic indices that incorporate non-linear plant-temperature relationships are selected for this purpose: growing degree hours—GDH (February–October) and chilling portions—CP (October–February). The current thermal growing conditions of each variety are examined and three clusters of grapevine cultivars are identified based on their GDH medians, thus assembling varieties with close heat accumulation requirements and providing more physiologically consistent information when compared to previous studies, as non-linear plant-temperature relationships are herein taken into account. These new clusters are also a complement to previous bioclimatic zoning. Ensemble mean projections under two anthropogenic-driven scenarios (RCP4.5 and RCP8.5, 2041–2070), from four EURO-CORDEX simulations, reveal a widespread increase of GDH and decrease of CP, but with spatial heterogeneities. The spatial variability of these indices throughout Portugal is projected to decrease (strongest increases of GDH in the coolest regions of the northeast) and to increase (strongest decreases of CP in the warmest regions of the south and west), respectively. The typical heat accumulation conditions of each cluster are projected to gradually shift north-eastwards and to higher-elevation areas, whereas insufficient chilling may represent a new challenge in warmer future climates. An unprecedented level of detail for a large collection of grapevine varieties in Portugal is provided, thus promoting a better planning of climate change adaptation measures.
This is a preview of subscription content,
to check access.




Similar content being viewed by others
References
Agosta E, Canziani P (2012) Regional climate variability impacts on the annual grape yield in Mendoza, Argentina. J Appl Meteorol Clim 51:993–1009. https://doi.org/10.1175/Jamc-D-11-0165.1
Anderson JD, Jones GV, Tait A, Hall A, Trought MCT (2012) Analysis of viticulture region climate structure and suitability in New Zealand. J Int Sci Vigne Vin 46:149–165
Anderson JL, Richardson EA, Kesner CD (1986) Validation of chill unit and flower bud phenology models for ‘Montmorency’ sour cherry. International Society for Horticultural Science, Leuven, pp 71–78. https://doi.org/10.17660/ActaHortic.1986.184.7
Andrade C, Fraga H, Santos JA (2014) Climate change multi- model projections for temperature extremes in Portugal. Atmos Sci Lett 15:149–156. https://doi.org/10.1002/asl2.485
Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62. https://doi.org/10.1016/j.envexpbot.2013.02.004
Bock A, Sparks TH, Estrella N, Menzel A (2013) Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS One 8:e69015. https://doi.org/10.1371/journal.pone.0069015
Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterization of the STICS crop model. Editions Quae, Versailles, France
Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290. https://doi.org/10.1038/432289a
Costa AC, Santos JA, Pinto JG (2012) Climate change scenarios for precipitation extremes in Portugal. Theor App Climatol 108:217–234. https://doi.org/10.1007/s00704-011-0528-3
Costa JM, Vaz M, Escalona J, Egipto R, Lopes C, Medrano H, Chaves MM (2016) Modern viticulture in southern Europe: vulnerabilities and strategies for adaptation to water scarcity. Agr Water Manage 164:5–18. https://doi.org/10.1016/j.agwat.2015.08.021
Costa R, Fraga H, Fernandes PM, Santos JA (2017) Implications of future bioclimatic shifts on Portuguese forests. Reg Environ Chang 17:117–127. https://doi.org/10.1007/s10113-016-0980-9
Costantini EAC, Campostrini F, Arcara PG, Cherubini P, Storchi P, Pierucci M (1996) Soil and climate functional characters for grape ripening and wine quality of “Vino Nobile di Montepulciano”. Acta Hortic 427:45–55
Costantini EAC, Lorenzetti R, Malorgio G (2016) A multivariate approach for the study of environmental drivers of wine economic structure. Land Use Policy 57:53–63. https://doi.org/10.1016/j.landusepol.2016.05.015
Dokoozlian NK (1999) Chilling temperature and duration interact on the budbreak of ‘Perlette’ grapevine cuttings. Hortscience 34:1054–1056
Duchene E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204. https://doi.org/10.3354/cr00850
Elloumi O, Ghrab M, Kessentini H, Ben Mimoun M (2013) Chilling accumulation effects on performance of pistachio trees cv. Mateur in dry and warm area climate. Sci Hortic 159:80–87. https://doi.org/10.1016/j.scienta.2013.05.004
Fila G, Di Lena B, Gardiman M, Storchi P, Tornasi D, Silvestroni O, Pitacco A (2012) Calibration and validation of grapevine budburst models using growth-room experiments as data source. Agric For Meteorol 160:69–79. https://doi.org/10.1016/j.agrformet.2012.03.003
Fila G, Gardiman M, Belvini P, Meggio F, Pitacco A (2014) A comparison of different modelling solutions for studying grapevine phenology under present and future climate scenarios. Agric For Meteorol 195:192–205. https://doi.org/10.1016/j.agrformet2014.05.011
Fraga H, Garcia de Cortazar Atauri I, Malheiro AC, Santos JA (2016a) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22:3774–3788. https://doi.org/10.1111/gcb.13382
Fraga H, Malheiro AC, Moutinho-Pereira J, Jones GV, Alves F, Pinto JG, Santos JA (2014) Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg Environ Chang 14:295–306. https://doi.org/10.1007/s10113-013-0490-y
Fraga H, Santos JA (2017) Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust J Grape Wine Res 23:296–304. https://doi.org/10.1111/ajgw.12278
Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho-Pereira J, Jones GV (2016b) Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int J Clim 36:1–12. https://doi.org/10.1002/joc.4325
Gu S (2016) Growing degree hours—a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int J Biometeorol 60:1123–1134. https://doi.org/10.1007/s00484-015-1105-8
Guo L, Dai JH, Wang MC, Xu JC, Luedeling E (2015) Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China. Agr Forest Meteorol 201:1–7. https://doi.org/10.1016/j.agrformet.2014.10.016
Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res-Atmos 113:D20119. https://doi.org/10.1029/2008jd010201
Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D21101. https://doi.org/10.1029/2009JD011799
Ikinci A, Mamay M, Unlu L, Bolat I, Ercisli S (2014) Determination of heat requirements and effective heat summations of some pomegranate cultivars grown in southern Anatolia. Erwerbs-obstbau 56:131–138. https://doi.org/10.1007/s10341-014-0220-8
IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
IVV (2015) Vinhos e Aguardentes de Portugal, Anuário 2015 Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Instituto da Vinha e do Vinho, Lisboa, p 236
Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. https://doi.org/10.1007/s10113-013-0499-2
Jones GV (2007) Climate change: observations, projections, and general implications for viticulture and wine production. XII Congresso Brasileiro de Viticultura e Enologia, Recife e Petrolina, PE, Brasil. Anais 12:55–66
Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Viticult 51:249–261
Keller M (2010) The science of grapevines: anatomy and physiology. Academic Press, Amsterdam
Kose B (2014) Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey’s Black Sea region. S Afr J Enol Vitic 35:90–102
Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. https://doi.org/10.5194/gmd-7-1297-2014
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130
Koufos G, Mavromatis T, Koundouras S, Fyllas NM, Jones GV (2014) Viticulture-climate relationships in Greece: the impacts of recent climate trends on harvest date variation. Int J Climatol 34:1445–1459. https://doi.org/10.1002/joc.3775
Lebon E, Dumas V, Pieri P, Schultz HR (2003) Modelling the seasonal dynamics of the soil water balance of vineyards. Funct Plant Biol 30:699–710. https://doi.org/10.1071/FP02222
Lee H, Sumner DA (2016) Modeling the effects of local climate change on crop acreage. Calif Agric 70:9–14. https://doi.org/10.3733/ca.v070n01p9
Lopes J, Eiras-Dias JE, Abreu F, Climaco P, Cunha JP, Silvestre J (2008) Thermal requirements, duration and precocity of phenological stages of grapevine cultivars of the Portuguese collection. Ciencia Tec Vitiv 23:61–71
Lopes CM, Santos TP, Monteiro A, Rodrigues ML, Costa JM, Chaves MM (2011) Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci Hortic 129:603–612. https://doi.org/10.1016/j.scienta.2011.04.033
Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–229. https://doi.org/10.1016/j.scienta.2012.07.011
Luedeling E, Kunz A, Blanke MM (2013) Identification of chilling and heat requirements of cherry trees-a statistical approach. Int J Biometeorol 57:679–689. https://doi.org/10.1007/s00484-012-0594-y
Luedeling E, Zhang MH, McGranahan G, Leslie C (2009) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864. https://doi.org/10.1016/j.agrformet.2009.06.013
Makra L, Vitanyi B, Gal A, Mika J, Matyasovszky I, Hirsch T (2009) Wine quantity and quality variations in relation to climatic factors in the Tokaj (Hungary) winegrowing region. Am J Enol Viticult 60:312–321
McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300. https://doi.org/10.1016/S0168-1923(97)00027-0
Metzger MJ, Rounsevell MDA (2011) A need for planned adaptation to climate change in the wine industry. Perspective Environ Res Lett 6:031001. https://doi.org/10.1088/1748-9326/6/3/031001
Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001
Molitor D, Caffarra A, Sinigoj P, Pertot I, Hoffmann L, Junk J (2014) Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Aust J Grape Wine Res 20:160–168. https://doi.org/10.1111/ajgw.12059
Moncur MW, Rattigan K, Mackenzie DH, Mcintyre GN (1989) Base temperatures for budbreak and leaf appearance of grapevines. Am J Enol Viticult 40:21–26
Mosedale JR, Wilson RJ, Maclean IM (2015) Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10:e0141218. https://doi.org/10.1371/journal.pone.0141218
OIV (2016) World Vitiviniculture situation. International Organisation of Vine and Wine, Paris
Oliveira M (1998) Calculation of budbreak and flowering base temperatures for vitis vinifera cv. Touriga francesa in the douro region of Portugal. Am J Enol Viticult 49:74–78
Olsson C, Jonsson AM (2015) Budburst model performance: the effect of the spatial resolution of temperature data sets. Agric For Meteorol 200:302–312. https://doi.org/10.1016/j.agrformet.2014.10.003
Orlandi F, Bonofiglio T, Aguilera F, Fornaciari M (2015) Phenological characteristics of different winegrape cultivars in Central Italy. Vitis 54:129–136
Parker AK, de Cortazar-Atauri IG, van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine Res 17:206–216. https://doi.org/10.1111/j.1755-0238.2011.00140.x
Parker A, de Cortázar-Atauri IG, Chuine I, Barbeau G, Bois B, Boursiquot JM, Cahurel JY, Claverie M, Dufourcq T, Gény L, Guimberteau G, Hofmann RW, Jacquet O, Lacombe T, Monamy C, Ojeda H, Panigai L, Payan JC, Lovelle BR, Rouchaud E, Schneider C, Spring JL, Storchi P, Tomasi D, Trambouze W, Trought M, van Leeuwen C (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species vitis vinifera L. Agric For Meteorol 180:249–264. https://doi.org/10.1016/j.agrformet.2013.06.005
Permanhani M, Costa JM, Conceicao MAF, de Souza RT, Vasconcellos MAS, Chaves MM (2016) Deficit irrigation in table grape: eco-physiological basis and potential use to save water and improve quality. Theor Exp Plant Phys 28:85–108. https://doi.org/10.1007/s40626-016-0063-9
Ramos MC, Jones GV, Yuste J (2015) Phenology and grape ripening characteristics of cv Tempranillo within the Ribera del Duero designation of origin (Spain): influence of soil and plot characteristics. Eur J Agron 70:57–70. https://doi.org/10.1016/j.eja.2015.07.009
Real AC, Borges J, Cabral JS, Jones GV (2015) Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates. Int J Biometeorol 59:1045–1059. https://doi.org/10.1007/s00484-014-0918-1
San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (2016) European atlas of Forest tree species. Publication Office of the European Union, Luxembourg
Santos JA, Costa R, Fraga H (2017) Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim Chang 140:273–286. https://doi.org/10.1007/s10584-016-1835-6
van Leeuwen C, Darriet P (2016) The impact of climate change on viticulture and wine quality. J Wine Econ 11:150–167. https://doi.org/10.1017/jwe.2015.21
van Leeuwen C, Schultz HR, Garcia de Cortazar-Atauri I, Duchene E, Ollat N, Pieri P, Bois B, Goutouly JP, Quenol H, Touzard JM, Malheiro AC, Bavaresco L, Delrot S (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci U S A 110:E3051–E3052. https://doi.org/10.1073/pnas.1307927110
van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubordieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207–217
van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17:1–10
Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, Oxford
Winkler AJ (1974) General viticulture. University of California Press, California
Winkler AJ, Williams WO (1939) The heat required to bring tokay grapes to maturity. Proc Amer Soc Hort Sci 37:650–652
Acknowledgments
This work was supported by the INNOVINE&WINE project (NORTE-01-0145-FEDER-000038), co-funded by the European Regional Development Fund through NORTE 2020 Programme; the ModelVitiDouro project (PA 53774), funded by the Agricultural and Rural Development Fund (EAFRD) and the Portuguese Government (Measure 4.1—Cooperation for Innovation PRODER Programme—Rural Development Programme); European Investment Funds (FEDER/COMPETE/POCI), POCI-01-0145-FEDER-006958, and Portuguese Foundation for Science and Technology (FCT), UID/AGR/04033/2013. The postdoctoral fellowship of Helder Fraga, SFRH/BPD/119461/2016, is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 1548 kb)
Rights and permissions
About this article
Cite this article
Santos, J.A., Costa, R. & Fraga, H. New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theor Appl Climatol 135, 1215–1226 (2019). https://doi.org/10.1007/s00704-018-2443-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-018-2443-3