Skip to main content

Warming slowdown over the Tibetan plateau in recent decades

Abstract

As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (Tmean), maximum temperature (Tmax) and minimum temperature (Tmin) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of Tmax and Tmin, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in Tmean and Tmin by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in Tmax and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since late Miocene times. Nature 411:62–66

    Article  Google Scholar 

  2. An WL, Hou SG, Zhang WB, Wu SY, Xu H, Pang HX, Wang YT, Liu YP (2016) Possible recent warming hiatus on the northwestern Tibetan plateau derived from ice core records. Sci Rep 6:8

    Article  Google Scholar 

  3. Cai DL, You QL, Fraedrich K, Guan YN (2017) Spatiotemporal temperature variability over the Tibetan plateau: altitudinal dependence associated with the global warming hiatus. J Clim 30:969–984

    Article  Google Scholar 

  4. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc 140:1935–1944

    Article  Google Scholar 

  5. Ding M, Li L, Zhang Y, Liu L, Wang Z (2014) Temperature change and its elevation dependency on the Tibetan plateau and its vicinity from 1971 to 2012. Resour Sci 36:1509–1518

    Google Scholar 

  6. Duan AM, Xiao ZX (2015) Does the climate warming hiatus exist over the Tibetan plateau? Sci Rep 5:9

    Google Scholar 

  7. Duan JP, Li L, Fang YJ (2015) Seasonal spatial heterogeneity of warming rates on the Tibetan plateau over the past 30 years. Sci Rep 5:8

    Google Scholar 

  8. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:3

    Article  Google Scholar 

  9. Fyfe JC, Gillett NP, Zwiers FW (2013a) Overestimated global warming over the past 20 years. Nat Clim Chang 3:767–769

    Article  Google Scholar 

  10. Fyfe JC, von Salzen K, Cole JNS, Gillett NP, Vernier JP (2013b) Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model. Geophys Res Lett 40:584–588

    Article  Google Scholar 

  11. Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie SP, Kosaka Y, Swart NC (2016) Making sense of the early-2000s warming slowdown. Nat Clim Chang 6:224–228

    Article  Google Scholar 

  12. Gao YH, Cuo L, Zhang YX (2014) Changes in moisture flux over the Tibetan plateau during 1979-2011 and possible mechanisms. J Clim 27:1876–1893

    Article  Google Scholar 

  13. Gao YH, Xu JW, Chen DL (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan plateau during 1979-2011. J Clim 28:2823–2841

    Article  Google Scholar 

  14. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Chang 3:649–653

    Article  Google Scholar 

  15. Guo DL, Wang HJ (2012) The significant climate warming in the northern Tibetan plateau and its possible causes. Int J Climatol 32:1775–1781

    Article  Google Scholar 

  16. Haywood JM, Jones A, Jones GS (2014) The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett 15:92–96

    Article  Google Scholar 

  17. Hedemann C, Mauritsen T, Jungclaus J, Marotzke J (2017) The subtle origins of surface-warming hiatuses. Nat Clim Chang 7:336–339

    Article  Google Scholar 

  18. IPCC (2013) Summary for policymakers. In Climate Change 2013: The physical science basis. Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  19. Karl TR, Arguez A, Huang BY, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472

    Article  Google Scholar 

  20. Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc Natl Acad Sci U S A 108:11790–11793

    Article  Google Scholar 

  21. Kendall MG (1955) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  22. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  23. Li QX, Yang S, Xu WH, Wang XLL, Jones P, Parker D, Zhou LM, Feng Y, Gao Y (2015) China experiencing the recent warming hiatus. Geophys Res Lett 42:889–898

    Article  Google Scholar 

  24. Liu XD, Cheng ZG, Yan LB, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan plateau and its surroundings. Glob Planet Chang 68:164–174

    Article  Google Scholar 

  25. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  26. Mauritsen T (2016) Global warming clouds cooled the earth. Nat Geosci 9:865–867

    Article  Google Scholar 

  27. Mears CA, Wentz FJ, Thorne P, Bernie D (2011) Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J Geophys Res-Atmos 116:16

    Article  Google Scholar 

  28. Meehl GA, Arblaster JM, Fasullo JT, Hu AX, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 1:360–364

    Article  Google Scholar 

  29. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res-Atmos 117:22

    Article  Google Scholar 

  30. Naud CM, Miller JR, Landry C (2012) Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations. J Geophys Res-Atmos 117:12

    Article  Google Scholar 

  31. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ, Mt Res Initiative EDWWG (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430

    Article  Google Scholar 

  32. Piao SL, Tan K, Nan HJ, Ciais P, Fang JY, Wang T, Vuichard N, Zhu BA (2012) Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob Planet Chang 98-99:73–80

    Article  Google Scholar 

  33. Qin J, Yang K, Liang SL, Guo XF (2009) The altitudinal dependence of recent rapid warming over the Tibetan plateau. Clim Chang 97:321–327

    Article  Google Scholar 

  34. Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36:6

    Article  Google Scholar 

  35. Rangwala I, Miller JR, Russell GL, Xu M (2010) Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan plateau during the twenty-first century. Clim Dyn 34:859–872

    Article  Google Scholar 

  36. Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21:1911–1917

    Article  Google Scholar 

  37. Ruckstuhl C, Philipona R, Morland J, Ohmura A (2007) Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J Geophys Res-Atmos 112:7

    Article  Google Scholar 

  38. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S, Schmidt GA, Fyfe JC, Cole JNS, Nazarenko L, Taylor KE, Wentz FJ (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189

    Article  Google Scholar 

  39. Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V (2016) Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat Clim Chang 6:936–940

    Article  Google Scholar 

  40. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  41. Solomon S, Daniel JS, Neely RR, Vernier JP, Dutton EG, Thomason LW (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333:866–870

    Article  Google Scholar 

  42. Tao J, Zhang YJ, Zhu JT, Jiang YB, Zhang XZ, Zhang T, Xi Y (2014) Elevation-dependent temperature change in the Qinghai-Xizang plateau grassland during the past decade. Theor Appl Climatol 117:61–71

    Article  Google Scholar 

  43. Tian L, Zhang YJ, Zhu JT (2014) Decreased surface albedo driven by denser vegetation on the Tibetan plateau. Environ Res Lett 9:11

    Article  Google Scholar 

  44. Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916

    Article  Google Scholar 

  45. Tudoroiu M, Eccel E, Gioli B, Gianelle D, Schume H, Genesio L, Miglietta F (2016) Negative elevation-dependent warming trend in the eastern alps. Environ Res Lett 11:12

    Article  Google Scholar 

  46. Wan ZM, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34:892–905

    Article  Google Scholar 

  47. Wang XJ, Yang MX, Liang XW, Pang GJ, Wan GN, Chen XL, Luo XQ (2014) The dramatic climate warming in the Qaidam Basin, northeastern Tibetan plateau, during 1961-2010. Int J Climatol 34:1524–1537

    Article  Google Scholar 

  48. Xie YK, Huang JP, Liu YZ (2017) From accelerated warming to warming hiatus in China. Int J Climatol 37:1758–1773

    Article  Google Scholar 

  49. Xu YM, Shen Y, Wu ZY (2013) Spatial and temporal variations of land surface temperature over the Tibetan plateau based on harmonic analysis. Mt Res Dev 33:85–94

    Article  Google Scholar 

  50. Yan LB, Liu ZY, Chen GS, Kutzbach JE, Liu XD (2016) Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments. Clim Chang 135:509–519

    Article  Google Scholar 

  51. Yang XM, Li ZX, Feng Q, He YQ, An WL, Zhang W, Cao WH, Yu TF, Wang YM, Theakstone WH (2012) The decreasing wind speed in southwestern China during 1969-2009, and possible causes. Quat Int 263:71–84

    Article  Google Scholar 

  52. Yang K, Wu H, Qin J, Lin CG, Tang WJ, Chen YY (2014) Recent climate changes over the Tibetan plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91

    Article  Google Scholar 

  53. You QL, Fraedrich K, Ren GY, Pepin N, Kang SC (2013) Variability of temperature in the Tibetan plateau based on homogenized surface stations and reanalysis data. Int J Climatol 33:1337–1347

    Article  Google Scholar 

  54. You QL, Min JZ, Kang SC (2016) Rapid warming in the Tibetan plateau from observations and CMIP5 models in recent decades. Int J Climatol 36:2660–2670

    Article  Google Scholar 

  55. Zeng ZZ, Chen AP, Ciais P, Li Y, Li LZX, Vautard R, Zhou LM, Yang H, Huang MT, Piao SL (2015) Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship. Geophys Res Lett 42:4563–4572

    Article  Google Scholar 

  56. Zhang Y, Li B, Zheng D (2002) A discussion on the boundary and area of the Tibetan plateau in China. Geogr Res 21:1–8

    Google Scholar 

  57. Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci U S A 110:4309–4314

    Article  Google Scholar 

  58. Zhang HB, Zhang F, Ye M, Che T, Zhang GQ (2016a) Estimating daily air temperatures over the Tibetan plateau by dynamically integrating MODIS LST data. J Geophys Res-Atmos 121:11425–11441

    Article  Google Scholar 

  59. Zhang HB, Zhang F, Zhang GQ, He XB, Tian LD (2016b) Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan plateau. Atmos Chem Phys 16:13681–13696

    Article  Google Scholar 

  60. Zhong L, Su ZB, Ma YM, Salama MS, Sobrino JA (2011) Accelerated changes of environmental conditions on the Tibetan plateau caused by climate change. J Clim 24:6540–6550

    Article  Google Scholar 

  61. Zhou LM, Dickinson RE, Tian YH, Vose RS, Dai YJ (2007) Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: application to the Sahel. Proc Natl Acad Sci U S A 104:17937–17942

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jian Tao, Tao Zhang, Yi Xi, Jyoti Bhandari, Ze Tang, Junxiang Li and Yixuan Zhu for their valuable comments and suggestions. We also thank the journal editor and the anonymous reviewers for their useful comments and efforts on this paper.

Funding

This research was funded by the following projects: the Chinese National Key Program for Developing Basic Science (2013CB956302) and the Science and Technology Project of the Chinese Academy of Sciences (XDA05050400).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yangjian Zhang.

Electronic supplementary material

ESM 1

(DOC 366 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Y., Zhu, J. et al. Warming slowdown over the Tibetan plateau in recent decades. Theor Appl Climatol 135, 1375–1385 (2019). https://doi.org/10.1007/s00704-018-2435-3

Download citation

Keywords

  • Tibetan plateau
  • Warming hiatus
  • Land surface temperature
  • MODIS
  • Mann-Kendall