Impact of bias correction and downscaling through quantile mapping on simulated climate change signal: a case study over Central Italy

  • Lorenzo Sangelantoni
  • Aniello Russo
  • Fabio Gennaretti
Original Paper
  • 21 Downloads

Abstract

Quantile mapping (QM) represents a common post-processing technique used to connect climate simulations to impact studies at different spatial scales. Depending on the simulation-observation spatial scale mismatch, QM can be used for two different applications. The first application uses only the bias correction component, establishing transfer functions between observations and simulations at similar spatial scales. The second application includes a statistical downscaling component when point-scale observations are considered. However, knowledge of alterations to climate change signal (CCS) resulting from these two applications is limited. This study investigates QM impacts on the original temperature and precipitation CCSs when applied according to a bias correction only (BC-only) and a bias correction plus downscaling (BC + DS) application over reference stations in Central Italy. BC-only application is used to adjust regional climate model (RCM) simulations having the same resolution as the observation grid. QM BC + DS application adjusts the same simulations to point-wise observations. QM applications alter CCS mainly for temperature. BC-only application produces a CCS of the median ~ 1 °C lower than the original (~ 4.5 °C). BC + DS application produces CCS closer to the original, except over the summer 95th percentile, where substantial amplification of the original CCS resulted. The impacts of the two applications are connected to the ratio between the observed and the simulated standard deviation (STD) of the calibration period. For the precipitation, original CCS is essentially preserved in both applications. Yet, calibration period STD ratio cannot predict QM impact on the precipitation CCS when simulated STD and mean are similarly misrepresented.

Supplementary material

704_2018_2406_MOESM1_ESM.pdf (4.7 mb)
ESM 1 (PDF 4761 kb)

References

  1. Appiotti F, Krželj M, Russo A, Ferretti M, Bastianini M, Marincioni F (2014) A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg Environ Chang 14(5):2007–2024.  https://doi.org/10.1007/s10113-013-0451-5 CrossRefGoogle Scholar
  2. Bellprat O, Kotlarski S, Lüthi D, Schär C (2013) Physical constraints for temperature biases in climate models. Geophys Res Lett 40(15):4042–4047.  https://doi.org/10.1002/grl.50737 CrossRefGoogle Scholar
  3. Berg P, Feldmann H, Panitz HJ (2012) Bias correction of high resolution regional climate model data. J Hydrol 448–449:80–92.  https://doi.org/10.1016/j.jhydrol.2012.04.026 CrossRefGoogle Scholar
  4. Bindoff N, Stott P, AchutaRao K, et al (2013) Detection and attribution of climate change: from global to regional. Clim Chang 2013 Phys Sci Basis Contrib Work Gr I to Fifth Assess Rep Intergovernmental Panel Clim Chang, pp 867–952Google Scholar
  5. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Chang 2(6):433–436.  https://doi.org/10.1038/nclimate1454 CrossRefGoogle Scholar
  6. Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 1655:1643–1655.  https://doi.org/10.1002/joc CrossRefGoogle Scholar
  7. Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959.  https://doi.org/10.1175/JCLI-D-14-00754.1 CrossRefGoogle Scholar
  8. Casati B, Yagouti A, Chaumont D (2013) Regional climate projections of extreme heat events in nine pilot Canadian communities for public health planning. J Appl Meteorol Climatol 52(12):2669–2698.  https://doi.org/10.1175/JAMC-D-12-0341.1 CrossRefGoogle Scholar
  9. Chiew FHS, Kirono DGC, Kent DM, Frost AJ, Charles SP, Timbal B, Nguyen KC, Fu G (2010) Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. J Hydrol 387(1-2):10–23.  https://doi.org/10.1016/j.jhydrol.2010.03.025 CrossRefGoogle Scholar
  10. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35(20):L20709.  https://doi.org/10.1029/2008GL035694 CrossRefGoogle Scholar
  11. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57(1-2):16–26.  https://doi.org/10.1016/j.gloplacha.2006.11.030 CrossRefGoogle Scholar
  12. Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1-4):145–163.  https://doi.org/10.1016/j.jhydrol.2004.10.012 CrossRefGoogle Scholar
  13. Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: analysis of the climate change signal. J Geophys Res Atmos 117(D17):1–24.  https://doi.org/10.1029/2012JD017968 CrossRefGoogle Scholar
  14. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological. Int J Climatol 1578:1547–1578.  https://doi.org/10.1002/joc CrossRefGoogle Scholar
  15. Gennaretti F, Sangelantoni L, Grenier P (2015) Toward daily climate scenarios for Canadian Arctic coastal zones with more realistic temperature-precipitation interdependence. J Geophys Res Atmos 120(23):11,862–11,877.  https://doi.org/10.1002/2015JD023890 CrossRefGoogle Scholar
  16. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  17. Gobiet A, Suklitsch M, Heinrich G (2015) The effect of empirical-statistical correction of intensity-dependent model errors on the climate change signal. Hydrol Earth Syst Sci Discuss 12(6):5671–5701.  https://doi.org/10.5194/hessd-12-5671-2015 CrossRefGoogle Scholar
  18. Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390.  https://doi.org/10.5194/hess-16-3383-2012 CrossRefGoogle Scholar
  19. Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15(3):1065–1079.  https://doi.org/10.5194/hess-15-1065-2011 CrossRefGoogle Scholar
  20. Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol 12(4):556–578.  https://doi.org/10.1175/2011JHM1336.1 CrossRefGoogle Scholar
  21. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1-2):407–418.  https://doi.org/10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  22. Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction—the ISI-MIP approach. Earth Syst Dyn 4(2):219–236.  https://doi.org/10.5194/esd-4-219-2013 CrossRefGoogle Scholar
  23. Hewitson B, Janetos AC, Carter TR, et al (2014) Regional Context. Clim Chang 2014 Impacts, Adapt Vulnerability Part A Glob Sect Asp Contrib Work Gr II to Fifth Assess Rep Intergov Panel Clim Chang, pp 1133–1197.  https://doi.org/10.1017/CBO9781107415386.001
  24. Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos 114(D21).  https://doi.org/10.1029/2009JD011799
  25. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sánchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44(2-3):135–150.  https://doi.org/10.3354/cr00932 CrossRefGoogle Scholar
  26. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333.  https://doi.org/10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  27. Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26(6):2137–2143.  https://doi.org/10.1175/JCLI-D-12-00821.1 CrossRefGoogle Scholar
  28. Maraun D (2016) Bias correcting climate change simulations—a critical review. Curr Clim Chang Rep 2(4):1–10.  https://doi.org/10.1007/s40641-016-0050-x CrossRefGoogle Scholar
  29. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003.  https://doi.org/10.1029/2009RG000314 CrossRefGoogle Scholar
  30. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S, Richter I, Soares PMM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Chang 7(11):764–773.  https://doi.org/10.1038/nclimate3418 CrossRefGoogle Scholar
  31. Maurer EP, Pierce DW (2014) Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol Earth Syst Sci 18(3):915–925.  https://doi.org/10.5194/hess-18-915-2014 CrossRefGoogle Scholar
  32. Mbaye ML, Haensler A, Hagemann S, Gaye AT, Moseley C, Afouda A (2016) Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River basin. Int J Climatol 36(4):2035–2049.  https://doi.org/10.1002/joc.4478 CrossRefGoogle Scholar
  33. Mpelasoka FS, Chiew FHS (2009) Influence of Rainfall Scenario Construction Methods on Runoff Projections. J Hydrometeorol 10:1168–1183.  https://doi.org/10.1175/2009JHM1045.1 CrossRefGoogle Scholar
  34. Nakicenovic N, Swart R (2000) Special report on emissions scenariosGoogle Scholar
  35. Panofsky HA, Brier GW (1968) Some applications of statistics to meteorology. The Pennsylvania State 625 University, University Park, PA, USA, p 224Google Scholar
  36. Piani C, Haerter JO, Coppola E (2009) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1-2):187–192.  https://doi.org/10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  37. Pierce DW, Cayan DR, Maurer EP, Abatzoglou JT, Hegewisch KC (2015) Improved bias correction techniques for hydrological simulations of climate change. J Hydrometeorol 16(6):150915153707007.  https://doi.org/10.1175/JHM-D-14-0236.1 CrossRefGoogle Scholar
  38. Rajczak J, Kotlarski S, Salzmann N, Schär C (2015) Robust climate scenarios for sites with sparse observations: a two-step bias correction approach. Int J Climatol 36(3):1226–1243.  https://doi.org/10.1002/joc.4417 CrossRefGoogle Scholar
  39. Smith PC, Heinrich G, Suklitsch M, Gobiet A, Stoffel M, Fuhrer J (2014) Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change. Clim Chang 127(3-4):521–534.  https://doi.org/10.1007/s10584-014-1263-4 CrossRefGoogle Scholar
  40. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29.  https://doi.org/10.1016/j.jhydrol.2012.05.052 CrossRefGoogle Scholar
  41. Themeßl MJ, Gobiet A, Heinrich G (2011a) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Chang 112(2):449–468.  https://doi.org/10.1007/s10584-011-0224-4 CrossRefGoogle Scholar
  42. Themeßl MJ, Gobiet A, Leuprecht A (2011b) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 1544(10):1530–1544.  https://doi.org/10.1002/joc.2168 CrossRefGoogle Scholar
  43. Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16(9):3309–3314.  https://doi.org/10.5194/hess-16-3309-2012 CrossRefGoogle Scholar
  44. van der Lindend P, Mitchell JFB (2009) Climate change and its impacts: summary of research and results from the ENSEMBLES projectGoogle Scholar
  45. Vaughan C, Dessai S (2014) Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework. Wiley Interdiscip Rev Clim Chang 5(5):587–603.  https://doi.org/10.1002/wcc.290 CrossRefGoogle Scholar
  46. Volosciuk C, Maraun D, Vrac M, Widmann M (2017) A combined statistical bias correction and stochastic downscaling method for precipitation. Hydrol Earth Syst Sci 21(3):1693–1719.  https://doi.org/10.5194/hess-21-1693-2017 CrossRefGoogle Scholar
  47. Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Chang 120(4):871–887.  https://doi.org/10.1007/s10584-013-0845-x CrossRefGoogle Scholar
  48. WMO No. 100 (2007) Guide to climatological practices, 3rd edn. WMO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CETEMPS, Department of Physical and Chemical SciencesUniversità dell’AquilaL’AquilaItaly
  2. 2.Department of Life and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly
  3. 3.NATO STO Centre for Maritime Research and ExperimentationLa SpeziaItaly
  4. 4.Université de Lorraine, AgroParisTech, INRA, UMR1434 SilvaNancyFrance

Personalised recommendations