Skip to main content

Advertisement

Log in

Impact of bias correction and downscaling through quantile mapping on simulated climate change signal: a case study over Central Italy

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Quantile mapping (QM) represents a common post-processing technique used to connect climate simulations to impact studies at different spatial scales. Depending on the simulation-observation spatial scale mismatch, QM can be used for two different applications. The first application uses only the bias correction component, establishing transfer functions between observations and simulations at similar spatial scales. The second application includes a statistical downscaling component when point-scale observations are considered. However, knowledge of alterations to climate change signal (CCS) resulting from these two applications is limited. This study investigates QM impacts on the original temperature and precipitation CCSs when applied according to a bias correction only (BC-only) and a bias correction plus downscaling (BC + DS) application over reference stations in Central Italy. BC-only application is used to adjust regional climate model (RCM) simulations having the same resolution as the observation grid. QM BC + DS application adjusts the same simulations to point-wise observations. QM applications alter CCS mainly for temperature. BC-only application produces a CCS of the median ~ 1 °C lower than the original (~ 4.5 °C). BC + DS application produces CCS closer to the original, except over the summer 95th percentile, where substantial amplification of the original CCS resulted. The impacts of the two applications are connected to the ratio between the observed and the simulated standard deviation (STD) of the calibration period. For the precipitation, original CCS is essentially preserved in both applications. Yet, calibration period STD ratio cannot predict QM impact on the precipitation CCS when simulated STD and mean are similarly misrepresented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sangelantoni.

Electronic supplementary material

ESM 1

(PDF 4761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangelantoni, L., Russo, A. & Gennaretti, F. Impact of bias correction and downscaling through quantile mapping on simulated climate change signal: a case study over Central Italy. Theor Appl Climatol 135, 725–740 (2019). https://doi.org/10.1007/s00704-018-2406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2406-8

Navigation