Skip to main content

Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012

Abstract

The São Francisco River is strategically important due to its hydroelectric potential and for bringing the largest water body of Brazilian Semiarid region, supplying water for irrigation, urban, and industrial activities. Thereby, for the purpose of characterizing changes on the precipitation patterns over São Francisco River basin, 11 extremes precipitation indices as defined by the joint WMO/CCI/ETCCDMI/CLIVAR project were calculated using daily observation from the 59 rain gauges during 1947–2012 period. The extreme climatic indices were calculated with the RClimDex software, which performs an exhaustive data quality control, intending to identify spurious errors and dataset inconsistencies. Weak and significant regional changes were observed in both CDD and SDII indices. Most precipitation extremes indices decreased but without statistical significance. The spatial analysis of indices did not show clearly regional changes due to the complexity of hydrometeorology of the region. In some cases, two rainfall stations exhibited opposite trends with the same significance level although they are separated by a few kilometers. This has occurred more frequently in Lower-Middle São Francisco, probably associated with intense land cover change over the last decades in this region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank AMGK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar R, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109

    Google Scholar 

  2. ANA, 2013. Região Hidrográfica do São Francisco. Accessed at: http://www.ibge.gov.br/home/geociencias/cartografia-/default_territ_area.shtm

  3. Arora VK, Boer GJ (2001) Effects of simulated climate change on the hydrology of major river basins. J Geophys Res 106(D4):3335–3348. https://doi.org/10.1029/2000JD900620

    Article  Google Scholar 

  4. Avissar R, Pan H (2000) Simulations of the summer hydrometeorological processes of Lake Kinneret. J Hydrometeorol 1(1):95–109. https://doi.org/10.1175/1525-7541(2000)001<0095:SOTSHP>2.0.CO;2

    Article  Google Scholar 

  5. Boccolari M, Malmusi S (2013) Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos Res 122:16–31. https://doi.org/10.1016/j.atmosres.2012.10.022

    Article  Google Scholar 

  6. Brown PJ, Bradlwy RS, Keimig FT (2010) Changes in extreme climate indices for the northeastern United States, 1870-2005. J Clim 23(24):6555–6572. https://doi.org/10.1175/2010JCLI3363.1

    Article  Google Scholar 

  7. Cao L, Pan S (2014) Changes in precipitation extremes over the “Three-River headwaters” region, hinterland of the Tibetan Plateau, during 1960-2012. Quat Int 321:105–115. https://doi.org/10.1016/j.quaint.2013.12.041

    Article  Google Scholar 

  8. Cavalcanti IFA (2012) Large scale and synoptic features with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40. https://doi.org/10.1016/j.atmosres.2012.06.012

    Article  Google Scholar 

  9. CBHSF (2004) Plano Decenal de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco–PBHSF (2004-2013) – Resumo Executivo

  10. Chan Z, Graylee K, Kajenthira A, Lee H, Martínez D, Roman A (2012) São Francisco River basin background paper. Water Federalism Conference Proceedings. Accessed at: http://watersecurityini-tiative.seas.harvard.edu/conference-papers-and-presentations

  11. Correia MF, Silva Dias MAF, Aragão MRS (2006a) Soil occupation and atmospheric variations over Sobradinho Lake area. Part one: an observation analysis. Meteorog Atmos Phys 94(1-4):103–113. https://doi.org/10.1007/s00703-005-0173-4

    Article  Google Scholar 

  12. Correia MF, Silva Dias MAF, Aragão MRS (2006b) Soil occupation and atmospheric variations over Sobradinho Lake area. Part two: a regional modelling study. Meteorog Atmos Phys 94(1-4):115–128. https://doi.org/10.1007/s00703-005-0174-3

    Article  Google Scholar 

  13. Croitoru A-E, Piticar A, Burada DC (2016) Changes in precipitation extremes in Romania. Quat Int 415:325–335

    Article  Google Scholar 

  14. Croitoru A-E, Chiotoroiu B-C, Todorova VI, Torică V (2013) Changes in precipitation extremes indices on the Black Sea western coast. Glob Planet Change 102:10–19. https://doi.org/10.1016/j.gloplacha.2013.01.004

    Article  Google Scholar 

  15. Dufek AS, Ambrizzi T (2008) Precipitation variability in São Paulo State, Brazil. Theor Appl Climatol 93(3-4):167–178. https://doi.org/10.1007/s00704-007-0348-7

    Article  Google Scholar 

  16. Filogonio R, Assis VB, Passos LF, Coutinho ME (2010) Distribution of populations of broad-snouted caiman (Caiman latirostris I Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz J Biol 70(4):961–968. https://doi.org/10.1590/S1519-69842010000500007

    Article  Google Scholar 

  17. Frich P, Alexander LV, Della-Marta P, Gelason B, Haylock M, Tank AMGK, Peterson T (2002) Observed coherent change in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. https://doi.org/10.3354/cr019193

    Article  Google Scholar 

  18. Hanel M, Buishand TA (2010) On the value of hourly precipitation extremes in regional climate model simulations. J Hydrol 393(3-4):265–273. https://doi.org/10.1016/j.jhydrol.2010.08.024

    Article  Google Scholar 

  19. Hastenrath S (2006) Circulation and teleconnection mechanisms of Northeast Brazil droughts. Prog Oceanogr 70(2-4):407–415. https://doi.org/10.1016/j.pocean.2005.07.004

    Article  Google Scholar 

  20. Hastenrath S, Heller L (1977) Dynamics of climatic hazards in northeast Brazil. Quart J R Meteorol Soc 103(435):77–92. https://doi.org/10.1002/qj.49710343505

    Article  Google Scholar 

  21. Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcuia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme south American rainfall in 1960-2000 and links with sea surface temperature. J Clim 19(8):1490–1512. https://doi.org/10.1175/JCLI3695.1

    Article  Google Scholar 

  22. IPCC (2007) Climate change 2007: the physical science basis. Cambridge, U.K.

    Google Scholar 

  23. IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 3–21

    Google Scholar 

  24. Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and precipitation extremes over Georgia, 1971-2010. Weather Clim Extremes 4:75–85. https://doi.org/10.1016/j.wace.2014.05.001

    Article  Google Scholar 

  25. Li ZX, Feng Q, Liu W, Wang TT, Gao Y, Wang YM, Cheng AF, Li JG, Liu L (2014) Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961-2009. Quat Int 336: 127–144 https://doi.org/10.1016/j.quaint.2013.12.045

  26. Liu W, Zhang M, Wang S, Wang B, Li F, Che Y (2013) Changes in precipitation extremes over Shaanxi Province, northwestern China, during 1960-2011. Quat Int 313-314:118–119. https://doi.org/10.1016/j.quaint.2013.06.033

    Article  Google Scholar 

  27. Ly M, Traore SB, Alhanssane A, Sarr B (2013) Evolution of some observed climate extremes in the West African Sahel. Weather Clim Extremes 1:19–25

    Article  Google Scholar 

  28. Maneta MP, Torres M, Wallender WW, Vosti S, Kirby M, Bassoi LH, Rodrigues LN (2009) Water demand and flows in the São Francisco River basin (Brazil) with increased irrigation. Agric Water Manag 96(8):1191–1200. https://doi.org/10.1016/j.agwat.2009.03.008

    Article  Google Scholar 

  29. Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int J Geol Earth Environ Sci 2:70–78

    Google Scholar 

  30. Nalley D, Adamowski J, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967-2006 using discrete wavelet transform. Atmos Res 132-133:375–398. https://doi.org/10.1016/j.atmosres.2013.06.011

    Article  Google Scholar 

  31. New M, Hewitson B, Stephenson DB, Tsiga A, Kruge A, Manhique A, Gomez B, Coelho CAS, Masisi DN, Kululanga E, Mbambalala E, Adesina F, Saleh H, Kanyanga J, Adosi J, Bulanr L, Fortunaga L, Mdoka ML, Lajoie R (2006) Evidence of trends in daily climate extremes over southern and west Africa. J Geophys Res 111(D14):D14102. https://doi.org/10.1029/2005JD006289

    Article  Google Scholar 

  32. Oliveira PT, Lima KC, Santos e Silva CM (2013a) Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil. Adv Geosci 35:73–78. https://doi.org/10.5194/adgeo-35-73-2013

    Article  Google Scholar 

  33. Oliveira PT, Santos e Silva CM, Lima KC (2013b) Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmos Sci Lett 15:172–177

    Article  Google Scholar 

  34. Oliveira PT, Santos E, Silva CM, Lima KC (2017) Climatology and trend analysis of extreme precipitation in sub regions of Northeast Brazil. Theor Appl Climatol 120:77–90. https://doi.org/10.1007/s00704-016-1865-z

  35. Oliveira PT, Santos e Silva CM, Lima KC (2014) Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmos Sci Lett 5: 172–177. https://doi.org/10.1002/asl2.484

  36. Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N. 2001. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001.World Meteorological Organization Rep., Geneva, Switzerland p.1071 (WCDMP-47, WMO-TD).

  37. Powell EJ, Keim BD (2015) Trends in daily temperature and precipitation extremes for the southeastern United States: 1948–2012. J Clim 28(4):1592–1612. https://doi.org/10.1175/JCLI-D-14-00410.1

    Article  Google Scholar 

  38. Ruml M, Gregorić E, Vujadinović M, Radovanović S, Matović G, Vuković A, Počuča V, Sojičić D (2017) Observed changes of temperature extremes in Serbia over the period 1961-2010. Atmos Res 183:26–41. https://doi.org/10.1016/j.atmosres.2016.08.013

    Article  Google Scholar 

  39. Santos CAC, Neale CMU, Rao TVR, Silva BB (2011) Trends in indices for extremes in daily temperature and precipitation over Utah, USA. Int J Climatol 31(12):1813–1822. https://doi.org/10.1002/joc.2205

    Article  Google Scholar 

  40. Santos HA, Pompeu PS, Kenji DOL (2012) Changes in the flood regime of São Francisco River (Brazil) from 1940 to 2006. Reg Environ Chang 12(1):123–132. https://doi.org/10.1007/s10113-011-0240-y

    Article  Google Scholar 

  41. Santos M, Fragoso M (2013) Precipitation variability in northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos Res 131:34–45. https://doi.org/10.1016/j.atmosres.2013.04.008

    Article  Google Scholar 

  42. Sato Y, Godinho HP (2004) Migratory fishes of the São Francisco river. In: Carolsfeld J, Harvey B, Ross C, Baer A (eds) Migratory fishes of South America: biology, fisheries, and conservation status. World Fisheries Trust/Word Bank/International Development Research Centre, Washington, DC, pp 195–232

    Google Scholar 

  43. Sen PK (1968) Estimates of regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  44. Sen Roy S, Balling Jr. RC (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24: 457–466. https://doi.org/10.1002/joc.99

  45. Song X, Song S, Sun W, Mu X, Wang S, Li J, Li Y (2015) Recent changes in extreme precipitation and drought over the Songhua River basin, China, during 1960-2013. Atmos Res 157:137–152. https://doi.org/10.1016/j.atmosres.2015.01.022

    Article  Google Scholar 

  46. Souza P, Cavalcanti IFA (2009) Atmospheric centres of action associated with the Atlantic ITCZ position. Int J Climatol 29(14):2091–2015. https://doi.org/10.1002/joc.1823

    Article  Google Scholar 

  47. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekoudt JRI, Blenman RC, Braithwaite GV, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Zaruela MO, Porter AO, Ramirez MS, Tamar GA, Roberts BA, Mitro SS, Shaw A, Spence JM, Winter A, Trotman AR (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961-2010. Int J Climatol 34:2957–2971

    Google Scholar 

  48. Stolf R, Piedade SMS, Silva JR, Silva LCF, Maniero MA (2012) Water transfer from São Francisco River to semiarid northeast of Brazil: technical data, environmental impacts, Survery of opinion about the amount to be transferred. Eng Agric 32:998–1010

    Google Scholar 

  49. Torres MO, Maneta M, Howitt R, Vosti SA (2011) Economic impacts of regional water scarcity in the São Francisco River basin, Brazil: an application of a linked hydro-economic model. Environ Dev Econ 17:227–248

    Article  Google Scholar 

  50. Wang S, Zhang M, Sun M, Wang B, Li X (2013a) Changes in precipitation extremes in alpine areas of Chinese Tianshan Mountains, central Asia, 1961-2011. Quat Int 311:97–107. https://doi.org/10.1016/j.quaint.2013.07.008

    Article  Google Scholar 

  51. Wang S, Zhang M, Wang B, Sun M, Li X (2013b) Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973-2011. Quat Int 313-314:110–117. https://doi.org/10.1016/j.quaint.2013.03.037

    Article  Google Scholar 

  52. Wang XL, Swail VR (2001) Changes of extremes wave heights in northern hemisphere oceans and related atmospheric regimes. J Clim 14(10):2204–2221. https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2

    Article  Google Scholar 

  53. Xu X, Du Y, Tang J, Wang Y (2011) Variations of temperature and precipitation extremes in recent two decades over China. Atmos Res 101(1-2):143–154. https://doi.org/10.1016/j.atmosres.2011.02.003

    Article  Google Scholar 

  54. Yan G, Qi F, Wei L, Aigang L, Yu W, Jing Y, Aifang C, Yamin W, Yubo S, Li L, Qianqian M (2015) Changes of daily climate extremes in Loess Plateau during 1960-2013. Quat Int 371:5–21. https://doi.org/10.1016/j.quaint.2014.08.052

    Article  Google Scholar 

  55. Zandonadi L, Acquaotta F, Fratianni S, Zavattini JA (2015) Changes in precipitation extremes in Brazil (Paraná River basin). Theor Appl Climatol 123:741–756

    Article  Google Scholar 

  56. Zhang X, Yang F (2004) RClimDex (1.0) user guide. Climate Research Branch Environment Canada, Downsview

  57. Zhang XB, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends over Canada during 20th century. Atmos-Ocean 38(3):395–429. https://doi.org/10.1080/07055900.2000.9649654

    Article  Google Scholar 

  58. Zhao Y, Zou X, Cao L, Xu X (2014) Changes in precipitation extremes over the Pearl River basin, southern China, during 1960-2012. Quat Int 333:26–39. https://doi.org/10.1016/j.quaint.2014.03.060

    Article  Google Scholar 

  59. Zongxing L, He Y, Wang P, Theakstone WH, An W, Wang X, Lu A, Zhang W, Cao W (2012) Changes of daily climate extremes in southwestern China during 1961-2008. Glob Planet Change 80-81:255–272. https://doi.org/10.1016/j.gloplacha.2011.06.008

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge to National Agency for the Water (ANA) which provided daily precipitation data over the São Francisco River Basin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bergson G. Bezerra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bezerra, B.G., Silva, L.L., Santos e Silva, C.M. et al. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theor Appl Climatol 135, 565–576 (2019). https://doi.org/10.1007/s00704-018-2396-6

Download citation