Skip to main content

Advertisement

Log in

Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Worldwide, crop pests (CPs) such as pathogens and insects affect agricultural production detrimentally. Species distribution models can be used for projecting current and future suitability of CPs and host crop localities. Our study overlays the distribution of two CPs (Asian soybean rust and beet armyworm) and common bean, a potential host of them, in order to determine their current and future levels of coexistence. This kind of modeling approach has rarely been performed previously in climate change studies. The soybean rust and beet armyworm model projections herein show a reduction of the worldwide area with high and medium suitability of both CPs and a movement of them away from the Equator, in 2100 more pronounced than in 2050. Most likely, heat and dry stress will be responsible for these changes. Heat and dry stress will greatly reduce and shift the future suitable cultivation area of common bean as well, in a similar manner. The most relevant findings of this study were the reduction of the suitable areas for the CPs, the reduction of the risk under future scenarios, and the similarity of trends for the CPs and host. The current results highlight the relation between and the coevolution of host and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (2004) Plant pathology, Elsevier Academic Press

  • ALA. (2014). Atlas of Living Australia. 2014, from http://www.ala.org.au/

  • Aluja M, Guillén L, Rull J, Höhn H, Frey J, Graf B, Samietz J (2011) Is the alpine divide becoming more permeable to biological invasions?–Insights on the invasion and establishment of the walnut husk fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland. Bull Entomol Res 101(04):451–465. https://doi.org/10.1017/S0007485311000010

    Article  Google Scholar 

  • Amaya OS, Restrepo OD, Argüelles J, Garramuño EA (2009) Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica-Ciencia y Tecnología Agropecuaria 10(1):24–32. https://doi.org/10.21930/rcta.vol10_num1_art:125

    Article  Google Scholar 

  • Babu SC, Rajasekaran B (1989) Dynamic economic injury levels of soybean rust-a dynamic programming model. Soybean Rust Newsletter 9:10–14

    Google Scholar 

  • Bandyopadhyay R, Ojiambo P, Twizeyimana M, Asafo-Adjei B, Frederick R, Pedley K, Stone C, Hartman G (2007) First report of soybean rust caused by Phakopsora pachyrhizi in Ghana. Plant Dis 91(8):1057–1057. https://doi.org/10.1094/PDIS-91-8-1057B

    Article  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244. https://doi.org/10.1126/science.1164363

    Article  Google Scholar 

  • Baysal-Gurel F, Ivey MLL, Dorrance A, Luster D, Frederick R, Czarnecki J, Boehm M, Miller SA (2008) An immunofluorescence assay to detect urediniospores of Phakopsora pachyrhizi. Plant Dis 92(10):1387–1393. https://doi.org/10.1094/PDIS-92-10-1387

    Article  Google Scholar 

  • Bebber DP (2015) Range-expanding pests and pathogens in a warming world. Annu Rev Phytopathol 53(1):335–356. https://doi.org/10.1146/annurev-phyto-080614-120207

    Article  Google Scholar 

  • Bebber DP, Holmes T, Smith D, Gurr SJ (2014) Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol 202(3):901–910. https://doi.org/10.1111/nph.12722

    Article  Google Scholar 

  • Berzitis EA, Minigan JN, Hallett RH, Newman JA (2014) Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma Trifurcata). Glob Chang Biol 20(9):2778–2792. https://doi.org/10.1111/gcb.12557

    Article  Google Scholar 

  • Bonde M, Berner D, Nester S, Frederick R (2007) Effects of temperature on urediniospore germination, germ tube growth, and initiation of infection in soybean by Phakopsora isolates. Phytopathology 97(8):997–1003. https://doi.org/10.1094/PHYTO-97-8-0997

    Article  Google Scholar 

  • Bregaglio S, Cappelli G, Donatelli M (2012) Evaluating the suitability of a generic fungal infection model for pest risk assessment studies. Ecol Model 247:58–63. https://doi.org/10.1016/j.ecolmodel.2012.08.004

    Article  Google Scholar 

  • Broughton W, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252(1):55–128. https://doi.org/10.1023/A:1024146710611

    Article  Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology, Springer Science & Business Media, DOI: https://doi.org/10.1007/978-1-4020-6359-6

  • Capinera JL (2014) Beet armyworm, Spodoptera exigua (Hübner)(Insecta: Lepidoptera: Noctuidae), University of Florida Cooperative Extension Service. Institute of Food and Agricultural Sciences, EDIS

    Google Scholar 

  • Cárcamo Rodríguez A, Rios JA, Hernández J (2006) First report of Asian soybean rust caused by Phakopsora pachyrhizi from Mexico. Plant Dis 90(9):1260–1260. https://doi.org/10.1094/PD-90-1260B

    Article  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci 96(11):5952–5959. https://doi.org/10.1073/pnas.96.11.5952

    Article  Google Scholar 

  • Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Chang Biol 19(7):1985–2000. https://doi.org/10.1111/gcb.12205

    Article  Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol 159(3):733–742. https://doi.org/10.1046/j.1469-8137.2003.00842.x

    Article  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432

    Article  Google Scholar 

  • Constenla M (1988) El uso de plaguicidas en America Latina: tendencias e implicaciones ambientales. International symposium on changing perspectives in agrochemicals: isotopic techniques for the study of food and environmental implications, Neuherberg (Germany, FR), pp 24–27

    Google Scholar 

  • Cook WC (1931) Notes on predicting the probable future distribution of introduced insects. Ecology 12(2):245–247. https://doi.org/10.2307/1931631

    Article  Google Scholar 

  • Cortez-Mondaca E, J Pérez-Márquez, E Sifuentes-Ibarra, C Garcia-Gutierrez, Valenzuela-Escoboza FA and JR Camacho-Baez (2014). Impacto del cambio climático sobre insectos en Sinaloa; el caso palomilla de la papa Phthorimaea operculella Zeller 1873 (Lepidoptera: Gelechiidae). En Sinaloa y el cambio climático global. L. M. Flores-Campana, R. E. Moran-Angulo and C. Karam-Quiniones: 219–235

  • Crisp MD, Arroyo MT, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458(7239):754–756. https://doi.org/10.1038/nature07764

    Article  Google Scholar 

  • Del Ponte EM, Esker PD (2008) Meteorological factors and Asian soybean rust epidemics: a systems approach and implications for risk assessment. Sci Agric 65(SPE):88–97

    Article  Google Scholar 

  • Demirel MC, Moradkhani H (2016) Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing. Clim Chang 135(2):357–372. https://doi.org/10.1007/s10584-015-1559-z

    Article  Google Scholar 

  • Desborough P (1984) Selection of soybean cultivar and sowing date as a strategy for avoidance of rust (Phakopsora pachyrhizi Syd.) losses in coastal New South Wales. Anim Prod Sci 24(126):433–439. https://doi.org/10.1071/EA9840433

    Article  Google Scholar 

  • Diaz BME (2004) Computarización de la Colección Nacional de insectos Dr. Alfredo Barrera Marín del Museo de Historia Natural de la Ciudad de México. Base Lepidoptera Consejo Internacional para la Preservación de las Aves-Sección Mexicana.. SNIB-CONABIO, México, D.F

    Google Scholar 

  • Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39(12):2119–2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x

    Article  Google Scholar 

  • EPPO (2009). Alert list: Phakopsora pachyrhizi (Asian soybean rust), EPPO

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. https://doi.org/10.1038/nature10947

    Article  Google Scholar 

  • GBIF. (2015). the global biodiversity information facility. 2014, from http://www.gbif.org/

  • Grafton RQ, Daugbjerg C, Qureshi ME (2015) Towards food security by 2050. Food Security 7(2):179–183. https://doi.org/10.1007/s12571-015-0445-x

    Article  Google Scholar 

  • Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14(14):4207–4219. https://doi.org/10.1111/j.1365-294X.2005.02740.x

    Article  Google Scholar 

  • Grewal PS, Gaugler R, Lewis EE (1993) Host recognition behavior by entomopathogenic nematodes during contact with insect gut contents. J Parasitol 79(4):495–503. https://doi.org/10.2307/3283373

    Article  Google Scholar 

  • Guo H, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F (2013) Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Glob Chang Biol 19(10):3210–3223. https://doi.org/10.1111/gcb.12260

    Article  Google Scholar 

  • Hanssen K (1970) Production of seed beans for export. Rhod Agric J 67:45–50

    Google Scholar 

  • Harmon PF, Momol MT, Marois J, Dankers H, Harmon CL (2005) Asian soybean rust caused by Phakopsora pachyrhizi on soybean and kudzu in Florida. Plant Health Progress 2005:1–4

    Google Scholar 

  • Hershman D, Bachi P, Harmon C, Harmon P, Palm M, McKemy J, Zeller K, Levy L (2006) First report of soybean rust caused by Phakopsora pachyrhizi on Kudzu (Pueraria montana var. lobata) in Kentucky. Plant Dis 90(6):834–834. https://doi.org/10.1094/PD-90-0834B

    Article  Google Scholar 

  • Hovmoller MS, Yahyaoui AH, Milus EA, Justesen AF (2008) Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol 17(17):3818–3826. https://doi.org/10.1111/j.1365-294X.2008.03886.x

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning et al., Cambridge University press, Cambridge: 996

  • Isakeit T, Miller M, Saldana R, Barnes L, McKemy J, Palm M, Zeller K, DeVries-Paterson R, Levy L (2006) First report of rust caused by Phakopsora pachyrhizi on soybean and kudzu in Texas. Plant Dis 90(7):971–971. https://doi.org/10.1094/PD-90-0971A

    Article  Google Scholar 

  • Ivancovich A, Botta G, Rivadaneira M, Saieg E, Erazzu L, Guillin E (2007) First report of soybean rust caused by Phakopsora pachyrhizi on Phaseolus spp. in Argentina. Plant Dis 91(1):111–111. https://doi.org/10.1094/PD-91-0111C

    Article  Google Scholar 

  • Jarvie JA (2009) A review of soybean rust from a South African perspective. S Afr J Sci 105(3–4):103–108

    Google Scholar 

  • Juroszek P, von Tiedemann A (2015) Linking plant disease models to climate change scenarios to project future risks of crop diseases: a review. J Plant Dis Protect 122(1):3–15. https://doi.org/10.1007/BF03356525

    Article  Google Scholar 

  • Karimi-Malati A, Fathipour Y, Talebi AA (2014) Development response of Spodoptera Exigua to eight constant temperatures: linear and nonlinear modeling. J Asia Pac Entomol 17(3):349–354. https://doi.org/10.1016/j.aspen.2014.03.002

    Article  Google Scholar 

  • Kim K, Wang T, Yang X (2005) Simulation of apparent infection rate to predict severity of soybean rust using a fuzzy logic system. Phytopathology 95(10):1122–1131. https://doi.org/10.1094/PHYTO-95-1122

    Article  Google Scholar 

  • Kochman J (1979) The effect of temperature on development of soybean rust (Phakopsora pachyrhizi). Crop and Pasture Sci 30(2):273–277. https://doi.org/10.1071/AR9790273

    Article  Google Scholar 

  • Koenning S, Moore A, Creswell T, Abad G, Palm M, McKemy J, Hernández J, Levy L, DeVries-Paterson R (2006) First report of soybean rust caused by Phakopsora pachyrhizi in North Carolina. Plant Dis 90(7):973–973. https://doi.org/10.1094/PD-90-0973A

    Article  Google Scholar 

  • Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2011) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3(1):53–64

    Article  Google Scholar 

  • Kriticos DJ, Reynaud P, Baker RHA, Eyre D (2012) Estimating the global area of potential establishment for the western corn rootworm (Diabrotica virgifera virgifera) under rain-fed and irrigated agriculture. OEPP/EPPO Bull 42(1):56–64. https://doi.org/10.1111/j.1365-2338.2012.02540.x

    Article  Google Scholar 

  • Kriticos D, Maywald G, Yonow T, Zurcher E, Herrmann N, Sutherst R (2015a) CLIMEX version 4: exploring the effects of climate on plants, animals and diseases. CSIRO, Canberra, ACT

    Google Scholar 

  • Kriticos DJ, Ota N, Hutchison WD, Beddow J, Walsh T, Tay WT, Borchert DM, Paula-Moraes SV, Czepak C, Zalucki MP (2015b) The potential distribution of invading Helicoverpa armigera in North America: is it just a matter of time? PLoS One 10(7)

  • Kumar S, Verma R (1985) Soyabean rust in NE hills of India: further observations. Soybean Rust Newsletter 7:17–19

    Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah J-L, Messéan A (2015) Robust cropping systems to tackle pests under climate change. A review. Agron Sustain Dev 35(2):443–459

    Article  Google Scholar 

  • Leach MC, Hobbs SL (2013) Plantwise knowledge bank: delivering plant health information to developing country users. Learn Publ 26(3):180–185

    Google Scholar 

  • Lenz HD, Bartha B, Straßer L, Lemme H (2016) Development of ash dieback in south-eastern Germany and the increasing occurrence of secondary pathogens. Forests 7(2):41. https://doi.org/10.3390/f7020041

    Article  Google Scholar 

  • Logan JA, Powell JA (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am Entomol 47(3):160–173. https://doi.org/10.1093/ae/47.3.160

    Article  Google Scholar 

  • Lynch T, Marois J, Wright D, Harmon P, Harmon C, Miles M, Hartman G (2006) First report of soybean rust caused by Phakopsora pachyrhizi on Phaseolus spp. in the United States. Plant Dis 90(7):970–970. https://doi.org/10.1094/PD-90-0970C

    Article  Google Scholar 

  • Mahdian K, Vantornhout I, Tirry L, De Clercq P (2006) Effects of temperature on predation by the stinkbugs Picromerus bidens and Podisus maculiventris (Heteroptera: Pentatomidae) on noctuid caterpillars. Bull Entomol Res 96(05):489–496

    Google Scholar 

  • Marchetti M, Melching J, Bromfield K (1976) The effects of temperature and dew period on germination and infection by uredospores of Phakopsora pachyrhizi. Phytopathology 66(4):461–463. https://doi.org/10.1094/Phyto-66-461

    Article  Google Scholar 

  • Melching J, Dowler W, Koogle D, Royer M (1989) Effects of duration, frequency, and temperature of leaf wetness periods on soybean rust. Plant Dis 73(2):117–122. https://doi.org/10.1094/PD-73-0117

    Article  Google Scholar 

  • Mendelsohn R, Dinar A (1999) Climate change, agriculture, and developing countries: does adaptation matter? World Bank Res Observer 14(2):277–293. https://doi.org/10.1093/wbro/14.2.277

    Article  Google Scholar 

  • Mullen J, Sikora E, McKemy J, Palm M, Levy L, DeVries-Paterson R (2006) First report of Asian soybean rust caused by Phakopsora pachyrhizi on soybean in Alabama. Plant Dis 90(1):112–112. https://doi.org/10.1094/PD-90-0112C

    Article  Google Scholar 

  • Murillo-Williams A, Esker P, Allen T, Stone C, Frederick R (2015) First report of Phakopsora pachyrhizi on soybean in Costa Rica. Plant Dis 99(3):418–418. https://doi.org/10.1094/PDIS-06-14-0646-PDN

    Article  Google Scholar 

  • Murithi H, Beed F, Soko M, Haudenshield J, Hartman G (2015) First report of Phakopsora pachyrhizi causing rust on soybean in Malawi. Phytopathology 105(7):905–916

    Article  Google Scholar 

  • Murithi H, Beed F, Tukamuhabwa P, Thomma B, Joosten M (2016) Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi. Plant Pathol 65(2):176–188. https://doi.org/10.1111/ppa.12457

    Article  Google Scholar 

  • Nakicenovic N and R Swart (2000). Special report on emissions scenarios. Special Report on Emissions Scenarios, Edited by Nebojsa Nakicenovic and Robert Swart, pp. 612. ISBN 0521804930. Cambridge, UK: Cambridge University Press, July 2000. 1

  • Nunkumar A, Caldwell P, Pretorius Z (2008) Alternative hosts of Asian soybean rust (Phakopsora pachyrhizi) in South Africa. S Afr J Plant and Soil 25(1):62–63. https://doi.org/10.1080/02571862.2008.10639896

    Article  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144(01):31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37(1):637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pivonia S, Yang X (2004) Assessment of the potential year-round establishment of soybean rust throughout the world. Plant Dis 88(5):523–529. https://doi.org/10.1094/PDIS.2004.88.5.523

    Article  Google Scholar 

  • Ploper L, González V, Gálvez M, de Ramallo N, Zamorano M, García G, Castagnaro A (2005) Detection of soybean rust caused by Phakopsora pachyrhizi in Northwestern Argentina. Plant Dis 89(7):774–774. https://doi.org/10.1094/PD-89-0774B

    Article  Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson S, Kelly JD, Dempewolf H (2013) Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. Agronomy 3(2):433–461. https://doi.org/10.3390/agronomy3020433

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23(5):237–244. https://doi.org/10.1016/j.tree.2008.02.002

    Article  Google Scholar 

  • Ram H, Rashid A, Zhang W, Duarte A, Phattarakul N, Simunji S, Kalayci M, Freitas R, Rerkasem B, Bal R (2016) Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil:1–13

  • Ramírez OA, Mumford JD (2008) Formulación de políticas fitosanitarias en América Central1. Manejo integrado de plagas en Mesoamerica 40:399

    Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Taylor S (2016) Crop niche modeling projects major shifts in common bean growing areas. Agric For Meteorol 218:102–113

    Article  Google Scholar 

  • Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ. Res Lett 8, 024018 p 12. https://doi.org/10.1088/1748-9326/8/2/024018

  • Rao V, Raut V, Patil V (1995) Out-break of soybean rust in Maharashtra. J Maharashtra Agri Univ 20(3):479–480

    Google Scholar 

  • Romero NJ (1998) Catálogo de insectos de la colección del Centro de Entomología. Colegio de Postgraduados. Instituto de Fitosanidad. SNIB-CONABIO, México, D.F

    Google Scholar 

  • Sabburg R, Obanor F, Aitken E, Chakraborty S (2015) Changing fitness of a necrotrophic plant pathogen under increasing temperature. Glob Chang Biol 21(8):3126–3137. https://doi.org/10.1111/gcb.12927

    Article  Google Scholar 

  • Santana Torres Y, Martínez de la Parte E, Pérez Vicente L, Rodríguez Bustamante E, Sánchez Marín R (2012) Alternative hosts of Phakopsora pachyrhizi in soybeans fields (Glycine max) of Ciego de Ávila province, Cuba. Fitosanidad 16(2):69–72

    Google Scholar 

  • Schoonhoven LM, Van Loon JJ, Dicke M (2005) Insect-plant biology. Press on Demand, Oxford University

    Google Scholar 

  • Sconyers L, Kemerait Jr R, Brock J, Gitaitis R, Sanders F, Phillips D, Jost P (2006) First report of Phakopsora pachyrhizi, the causal agent of Asian soybean rust, on Florida beggarweed in the United States. Plant Dis 90(7):972–972. https://doi.org/10.1094/PD-90-0972A

    Article  Google Scholar 

  • Shabani F, Kumar L (2013) Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS One 8(12):e83404. https://doi.org/10.1371/journal.pone.0083404

    Article  Google Scholar 

  • Shabani F, Kumar L (2014) Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera L. PLoS One 9(4):e94867. https://doi.org/10.1371/journal.pone.0094867

    Article  Google Scholar 

  • Shabani F, Kumar L (2015) Should species distribution models use only native or exotic records of existence or both? Ecol Inform 29:57–65. https://doi.org/10.1016/j.ecoinf.2015.07.006

    Article  Google Scholar 

  • Shabani F, Kumar L, Taylor S (2012) Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS One 7(10):1–12

    Article  Google Scholar 

  • Shabani F, Kumar L, Taylor S (2013) Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios. J Agric Sci 152(04):543–557

    Article  Google Scholar 

  • Shabani F, Kumar L, Nojoumian AH, Esmaeili A, Toghyani M (2016) Projected future distribution of date palm and its potential use in alleviating micronutrient deficiency. J Sci Food Agric 96(4):1132–1140. https://doi.org/10.1002/jsfa.7195

    Article  Google Scholar 

  • da Silva RS, L Kumar, F Shabani and MC Picanço (2016). Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest Manag Sci

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49(1):465–481. https://doi.org/10.1146/annurev-phyto-072910-095423

    Article  Google Scholar 

  • Slaminko T, Miles M, Frederick R, Bonde M, Hartman G (2008) New legume hosts of Phakopsora pachyrhizi based on greenhouse evaluations. Plant Dis 92(5):767–771. https://doi.org/10.1094/PDIS-92-5-0767

    Article  Google Scholar 

  • Sturrock R, Frankel S, Brown A, Hennon P, Kliejunas J, Lewis K, Worrall J, Woods A (2011) Climate change and forest diseases. Plant Pathol 60(1):133–149. https://doi.org/10.1111/j.1365-3059.2010.02406.x

    Article  Google Scholar 

  • Sutherst RW (2014) Pest species distribution modelling: origins and lessons from history. Biol Invasions 16(2):239–256. https://doi.org/10.1007/s10530-013-0523-y

    Article  Google Scholar 

  • Sutherst R, Maywald G (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13(3):281–299. https://doi.org/10.1016/0167-8809(85)90016-7

    Article  Google Scholar 

  • Sutherst R, Maywald G, Bourne A (2007a) Including species interactions in risk assessments for global change. Glob Chang Biol 13(9):1843–1859. https://doi.org/10.1111/j.1365-2486.2007.01396.x

    Article  Google Scholar 

  • Sutherst R, G Maywald and D Kriticos (2007b) CLIMEX version 3: user’s guide. Hearne Scientific Software Pty Ltd.

  • Tschanz A, T Wang and B Tsai (1983) Recent advances in soybean rust research. International Symposium on Soybean in Tropical and Sub-tropical Cropping Systems

  • Twizeyimana M, Ojiambo P, Ikotun T, Ladipo J, Hartman G, Bandyopadhyay R (2008) Evaluation of soybean germplasm for resistance to soybean rust (Phakopsora pachyrhizi) in Nigeria. Plant Dis 92(6):947–952. https://doi.org/10.1094/PDIS-92-6-0947

    Article  Google Scholar 

  • Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220(23):3248–3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013

    Article  Google Scholar 

  • Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CD, McCann KS, Savage V, Tunney TD, O'Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc Lond B Biol Sci 281(1779):20132612. https://doi.org/10.1098/rspb.2013.2612

    Article  Google Scholar 

  • Wang T, Hartman G (1992) Epidemiology of soybean rust and breeding for host resistance. Plant Protect Bull (Taipei) 34(2):109–124

    Google Scholar 

  • Wilson J (1932) Notes on the biology of Laphygma exigua Hübner. Florida Entomol 16(3):33–39. https://doi.org/10.2307/3492536

    Article  Google Scholar 

  • Yañez-Lopez R, Hernández-Zul MI, Quijano-Carranza JÁ, Terán-Vargas AP, Pérez-Moreno L, Díaz-Padilla G, Rico-García E (2015) Potential distribution zones for soybean rust (Phakopsora pachyrhizi) in Mexico. Ecosistemas y Recursos Agropecuarios 2(6):291–302

    Google Scholar 

  • Yeh C, Sinclair J, Tschanz A (1982) Phakopsora pachyrhizi: Uredial development, urediospore production and factors affecting teliospore formation on soybeans. Crop and Pasture Sci 33(1):25–31. https://doi.org/10.1071/AR9820025

    Article  Google Scholar 

  • Zheng X-L, Cong X-P, Wang X-P, Lei C-L (2011) Pupation behaviour, depth, and site of Spodoptera Exigua. Bull Insectol 64:209–214

    Google Scholar 

  • Zheng X-L, Wang P, Cheng W-J, Wang X-P, Lei C-L (2012) Projecting overwintering regions of the beet armyworm, Spodoptera exigua in China using the CLIMEX model. J Insect Sci 12(13):1–13. https://doi.org/10.1673/031.012.1301

    Article  Google Scholar 

  • Zheng X-L, Huang Q-C, Cao W-Z, Lu W, Wang G-Q, Yu S-Z, Yang Z-D, Wang X-P (2015) Modeling climate change impacts on overwintering of Spodoptera exigua Hübner in regions of China. Chilean J Agr Res 75(3):328–333. https://doi.org/10.4067/S0718-58392015000400009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiezhda Yakovleva Zitz Ramirez-Cabral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Cabral, N.Y.Z., Kumar, L. & Shabani, F. Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theor Appl Climatol 135, 409–424 (2019). https://doi.org/10.1007/s00704-018-2385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2385-9

Keywords

Navigation