Skip to main content

Local-scale analysis of temperature patterns over Poland during heatwave events

Abstract

Heatwaves are predicted to increase in frequency, duration, and severity in the future, including over Central Europe where populations are sensitive to extreme temperature. This paper studies six recent major heatwave events over Poland from 2006 through 2015 using regional-scale simulations (10-km grid spacing, hourly frequency) from the Weather Research and Forecast (WRF) model to define local-scale 2-m temperature patterns. For this purpose, a heatwave is defined as at least three consecutive days with maximum 2-m air temperature exceeding 30 °C. The WRF simulations were validated using maximum daily 2-m temperature observations from 12 meteorological stations in select Polish cities, which were selected to have even spatial coverage across the study area. Synoptic analysis of the six study events shows that the inflow of tropical air masses from the south is the primary driver of heatwave onset and maintenance, the highest temperatures (and most vulnerable areas) occur over arable land and artificial surfaces in central and western Poland, while coastal areas in the north, mountain areas in the south, and forested and mosaic areas of smaller fields and pastures of the northwest, northeast, and southeast are less affected by prolonged periods of elevated temperatures. In general, regional differences in 2-m temperature between the hottest and coolest areas is about 2–4 °C. Large urban areas like Warsaw, or the large complex of artificial areas in the conurbation of Silesian cities, are also generally warmer than surrounding areas by roughly 2–4 °C, and even up to 6 °C, especially during the night. Additionally, hot air from the south of Poland flows through a low-lying area between two mountain ranges (Sudetes and Carpathian Mountains)—the so-called Moravian Gate—hitting densely populated urban areas (Silesian cities) and Cracow. These patterns occur only during high-pressure synoptic conditions with low cloudiness and wind and without any active fronts or mesoscale convective disturbances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abaurrea J, Asín J, Cebrián AC, Centelles A (2007) Modeling and forecasting extreme hot events in the central Ebro valley, a continental-Mediterranean area. Glob Planet Change 57(1-2):43–58. https://doi.org/10.1016/j.gloplacha.2006.11.005

    Article  Google Scholar 

  2. Basara JB, Basara HG, Illston BG, Crawford KC (2010) The impact of the Urban Heat Island during an intense heat wave in Oklahoma City. Adv in Meteor 2010, 10 pages:1–10. https://doi.org/10.1155/2010/230365

    Article  Google Scholar 

  3. Beniston M, Stephenson D, Christensen OB, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81(S1):71–95. https://doi.org/10.1007/s10584-006-9226-z

    Article  Google Scholar 

  4. Błażejczyk K (2011) Assessment of regional bioclimatic contrasts in Poland. Misc Geogr 15:79–91

    Google Scholar 

  5. Błażejczyk K, Kuchcik M, Dudek W, Kręcisz B, Błażejczyk A, Milewski P, Szmyd J, Pałczyński C (2016) Urban Heat Island and bioclimatic comfort in Warsaw. In: Musco F (ed) Counteracting Urban Heat Island effects in a global climate change scenario. SpringerOpen, Veniece, p 400. https://doi.org/10.1007/978-3-319-10425-6_11

    Google Scholar 

  6. Cavallo SM, Dudhia J, Snyder C (2011) A multilayer upper-boundary condition for longwave radiative flux to correct temperature biases in a mesoscale model. Mon Wea Rev 139(6):1952–1959. https://doi.org/10.1175/2010MWR3513.1

    Article  Google Scholar 

  7. Chen F, Dudhia J (2001a) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity Mon Wea Rev 129:569–585. https://doi.org/10.1175/1520-0493(2001)129,0569

    Google Scholar 

  8. Chen F, Dudhia J (2001b) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation Mon Wea Rev 129:587–604. https://doi.org/10.1175/1520-0493(2001)129,0587

    Google Scholar 

  9. Cueto García RO, Martínez AT, Ostos EJ (2010) Heat waves and heat days in an arid city in the northwest of México: current trends and in climate change scenarios. Int J Biometeorol 54(4):335–345. https://doi.org/10.1007/s00484-009-0283-7

    Article  Google Scholar 

  10. De Bono A, Giuliani G, Kluster S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. Environ Alert Bull UNEP 4. https://doi.org/10.1017/S0147547903000218

  11. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007a) Doubled length of western European summer heat waves since 1880. J Geophys Res Atmos 112(D15):1–11. https://doi.org/10.1029/2007JD008510

    Article  Google Scholar 

  12. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007b) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2-3):251–275. https://doi.org/10.1007/s00382-007-0233-1

    Article  Google Scholar 

  13. Ding T, Qian W, Yan Z (2009) Changes in hot days and heat waves in China during 1961-2007. Int J Climatol 4:1549–1555. https://doi.org/10.1002/joc

    Google Scholar 

  14. Dyer J (2011) Analysis of a warm-season surface-influenced mesoscale convective boundary in Northwest Mississippi. J Hydrometeorol 12(5):1007–1023. https://doi.org/10.1175/2011JHM1326.1

    Article  Google Scholar 

  15. Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens, Greece—a typical summer in the future climate? Glob Planet Change 67(3-4):227–236. https://doi.org/10.1016/j.gloplacha.2009.03.013

    Article  Google Scholar 

  16. Golden JS, Hartz D, Brazel A, Luber G, Phelan P (2008) A biometeorology study of climate and heat-related morbidity in phoenix from 2001 to 2006. Int J Biometeorol 52(6):471–480. https://doi.org/10.1007/s00484-007-0142-3

    Article  Google Scholar 

  17. Hong SY, Yign N, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 134(9):2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  18. Hoy A, Hänsel S, Skalak P, Ustrnul Z, Bochníček O (2016) The extreme European summer of 2015 in a long-term perspective. Int J Climatol 37(2):943–962. https://doi.org/10.1002/joc.4751

    Article  Google Scholar 

  19. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long–lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113(D13):D13103. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  20. Institute of Geodesy and Cartography (2016) Website: http://www.igik.edu.pl/en/corine-mapy. Accessed 17 Nov 2016

  21. IPCC (2014) Climate Change 2014 synthesis report. Contrib Work Groups I, II III to Fifth Assess Rep Intergov Panel Clim Chang [Core Writ Team, RK Pachauri LA Meyer (eds)] IPCC, Geneva, Switz 1–151

  22. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  23. Kinney PL, O’Neill MS, Bell ML, Schwartz J (2008) Approaches for estimating effects of climate change on heat-related deaths: challenges and opportunities. Environ Sci Pol 11(1):87–96. https://doi.org/10.1016/j.envsci.2007.08.001

    Article  Google Scholar 

  24. Kobayashi K, Salam MU (2000) Comparing simulated and measured values using mean squared deviation and its components. Agron J 92(2):345–352. https://doi.org/10.2134/agronj2000.922345x

    Article  Google Scholar 

  25. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  26. Koźmiński C, Michalska B (2011) Variability in the numbers of cold, cool, warm, hot, and very hot days in Poland in the April–September period [in Polish]. Przegląd Geogr 83(1):91–107. https://doi.org/10.7163/PrzG.2011.1.5

    Article  Google Scholar 

  27. Kuchcik M (2006) Defining heat waves—different approaches. Geogr Pol 79:47–63

    Google Scholar 

  28. Kuchcik M, Degórski M (2009) Heat- and cold-related mortality in the north-east of Poland as an example of the socio-economic effects of extreme hydrometeorological events in the Polish lowland. Geogr Pol 82(1):69–78. https://doi.org/10.7163/GPol.2009.1.6

    Article  Google Scholar 

  29. Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: analysis over the 20th century. Glob Planet Change 62(1-2):147–163. https://doi.org/10.1016/j.gloplacha.2008.01.003

    Article  Google Scholar 

  30. Kyselý J, Huth R (2008) Relationships of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conducive to heat waves. Adv Geosci 2008:243–249. https://doi.org/10.5194/adgeo-14-243-2008

    Article  Google Scholar 

  31. Lhotka O, Kyselý J (2014) Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int J Climatol 1244:n/a-n/a. https://doi.org/10.1002/joc.4050

  32. Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35(5):429–435. https://doi.org/10.1016/j.amepre.2008.08.021

    Article  Google Scholar 

  33. Matthes H, Rinke A, Dethloff K (2009) Variability of observed temperature-derived climate indices in the Arctic. Glob Planet Change 69(4):214–224. https://doi.org/10.1016/j.gloplacha.2009.10.004

    Article  Google Scholar 

  34. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science (80- ) 305:994–997. https://doi.org/10.1126/science.1098704

    Article  Google Scholar 

  35. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102(D14):16,663–16,682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  36. Nasrallah HA, Nieplova E, Ramadan E (2004) Warm season extreme temperature events in Kuwait. J Arid Environ 56(2):357–371. https://doi.org/10.1016/S0140-1963(03)00007-7

    Article  Google Scholar 

  37. NOAA (2015) Oceanic and Atmospheric Administration Federal Climate Complex Global Surface Summary of Day Data—Version 07/2010. ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt

  38. Polish Academy of Sciences (2016) Institute of geography and spatial organization, geographic information systems and cartography workgroup. Website: http://maps.igipz.pan.pl. Accessed 17 Nov 2016

  39. www.pogodynka.pl (The official website of the Polish Institute of Meteorology and Water Management—National Research Institute in Poland). Accessed 17 Nov 2017

  40. Prezerakos NG (1989) A contribution to the study of the extreme heatwave over the south Balkans in July 1987. Meteorog Atmos Phys 41(4):261–271. https://doi.org/10.1007/BF01026115

    Article  Google Scholar 

  41. Rey G, Jougla E, Fouillet A, Pavillon G, Bessemoulin P, Frayssinet P, Clavel J, Hémon D (2007) The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int Arch Occup Environ Health 80(7):615–626. https://doi.org/10.1007/s00420-007-0173-4

    Article  Google Scholar 

  42. Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40(4):762–775. https://doi.org/10.1175/1520-0450(2001)040<0762:otdoah>2.0.co;2

    Article  Google Scholar 

  43. Shabbar A, Bonsal B (2003) An assessment of changes in winter cold and warm spells over Canada. Nat Hazards 29(2):173–188. https://doi.org/10.1023/A:1023639209987

    Article  Google Scholar 

  44. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. https://doi.org/10.5065/D68S4MVH

  45. Smoyer-Tomic KE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28(2/3):465–486. https://doi.org/10.1023/A:1022946528157

    Article  Google Scholar 

  46. Stefanon M, D’Andrea F, Drobinski P (2012) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7(1):14023. https://doi.org/10.1088/1748-9326/7/1/014023

    Article  Google Scholar 

  47. Tan J, Zheng Y, Tang X, Guo C, Li L, SongG ZX, Yuan D, Kalkstein AJ, Li F, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84. https://doi.org/10.1007/s00484-009-0256-x

    Article  Google Scholar 

  48. Thompson GR, Rasmussen M, Manning K (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme Part I: Description and sensitivity analysis. Mon Weather Rev 132:519–542

    Article  Google Scholar 

  49. Tomczyk AM, Bednorz E (2016) Heat waves in Central Europe and their circulation conditions. Int J Climatol 36(2):770–782. https://doi.org/10.1002/joc.4381

    Article  Google Scholar 

  50. Twardosz R, Kossowska-Cezak U (2013) Exceptionally hot summers in Central and Eastern Europe (1951-2010). Theor Appl Climatol 112(3-4):617–628. https://doi.org/10.1007/s00704-012-0757-0

    Article  Google Scholar 

  51. Unkašević M, Tošić I (2009) An analysis of heat waves in Serbia. Glob Planet Chang 65(1-2):17–26. https://doi.org/10.1016/j.gloplacha.2008.10.009

    Article  Google Scholar 

  52. Viola FM, Paiva SLD, Savi MA (2010) Analysis of the global warming dynamics from temperature time series. Ecol Model 221(16):1964–1978. https://doi.org/10.1016/j.ecolmodel.2010.05.001

    Article  Google Scholar 

  53. Wibig J, Podstawczyńska A, Rzepa M, Piotrowski P (2009) Heatwaves in Poland—frequency, trends and relationships with atmospheric circulation. Geogr Pol 82(1):47–59. https://doi.org/10.7163/GPol.2009.1.3

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Krzyżewska.

Electronic supplementary material

Figure 1

The synoptic maps from all six heatwave events from 00 UTC (left: the conditions on the first day of the event, right: the conditions during the hottest day of the event), (a,g) Event 1, (b, h) Event 2, (c, i) Event 3, (d, j) Event 4, (e, k) Event 5, (f, l) Event 6 (see Table 1 for associated dates of events). The markings on the maps are interpreted as follows: W – atmospheric high, N – atmospheric low, PZ – tropical air, PPk – polar continental air, PPm – Polar maritime air, PPmc – polar maritime warm air. The source of the maps are archives of the Polish Institute of Meteorology and Water Management (IMGW), recently available at: http://www.pogodynka.pl/polska/mapa_synoptyczna (JPEG 929 kb)

Fig. 1b

(JPEG 1056 kb)

Fig. 1c

(JPEG 321 kb)

Fig. 1d

(JPEG 342 kb)

Fig. 1e

(JPEG 392 kb)

Fig. 1f

(JPEG 460 kb)

Fig. 1g

(JPEG 907 kb)

Fig. 1h

(JPEG 1008 kb)

Fig. 1i

(JPEG 294 kb)

Fig. 1j

(JPEG 311 kb)

Fig. 1k

(JPEG 378 kb)

Fig. 1l

(JPEG 442 kb)

Figure 2

Average simulated 500-hPa geopotential height and 2-m mean temperature from the WRF model for all study events over the respective event time frames: (a) Event 1 (2006), (b) Event 2 (2010), (c) Event 3 (2012), (d) Event 4 (2013), (e) Event 5 (2014), and (f) Event 6 (2015). See Table 1 for associated dates of events. (PNG 22 kb)

Fig. 2b

(PNG 24 kb)

Fig. 2c

(PNG 26 kb)

Fig. 2d

(PNG 25 kb)

Fig. 2e

(PNG 24 kb)

Fig. 2f

(PNG 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krzyżewska, A., Dyer, J. Local-scale analysis of temperature patterns over Poland during heatwave events. Theor Appl Climatol 135, 261–277 (2019). https://doi.org/10.1007/s00704-017-2364-6

Download citation