Skip to main content
Log in

Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen DW (2011) Getting to know ArcGIS Model Builder. ESRI Press, Redlands

    Google Scholar 

  • Alvares CA (2011) Mapeamento e modelagem edafoclimática da produtividade de plantações de Eucalyptus no sul do estado de São Paulo. Ph.D. Thesis, University of São Paulo, Piracicaba, Brazil. (www.teses.usp.br/teses/disponiveis/11/11150/tde-23052011-161837/en.php)

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM (2013a) Modeling monthly mean air temperature for Brazil. Theor Appl Climatol 113:407–427

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013b) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Alvares CA, Mattos EM, Sentelhas PC, Miranda AC, Stape JL (2015) Modeling temporal and spatial variability of leaf wetness duration in Brazil. Theor Appl Climatol 120:455–467

    Article  Google Scholar 

  • Andrade EM (1928) O eucalypto e suas aplicacções. Typographia Brazil de Rothschild & Comp, São Paulo

    Google Scholar 

  • Bardin L, Pedro Junior MJ, Moraes JFL (2010) Estimation of maximum and minimum air temperatures for the “Circuito das Frutas” region (São Paulo State, Brazil). Rev Bras Eng Agric Ambient 14:618–624

    Article  Google Scholar 

  • Bergel-Hayat R, Debbarh M, Antoniou C, Yannis G (2013) Explaining the road accident risk: weather effects. Accid Anal Prev 60:456–465

    Article  Google Scholar 

  • BOM—Bureau of Meteorology (2008) Mean monthly and mean annual number of days with a minimum temperature below a specified threshold. Bureau of Meteorology, Australia Accessed at http://www.bom.gov.au/jsp/ncc/climate_averages/frost/index.jsp. Accessed 2 May 2015

    Google Scholar 

  • Boostma A (1976) Estimating grass minimum temperatures from screen minimum values and other climatological parameters. Agric Meteorol 16:103–113

    Article  Google Scholar 

  • Brando PM, Durigan G (2005) Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecol 175:205–215

    Article  Google Scholar 

  • Briche E, Beltrando G, Somot S, Quénol H (2014) Critical analysis of simulated daily temperature data from the ARPEGE-climate model: application to climate change in the champagne wine-producing region. Clim Chang 123:241–254

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Calvo JC, Gregory JD (1994) Predicting monthly and annual air temperature characteristics in North Carolina. J Appl Meteorol 33:490–499

    Article  Google Scholar 

  • Camargo AP (1972) Apontamentos de agrometeorologia. Apostila da FAZMCG, Esp. Sto. do Pinhal, Brazil

  • Camargo MBP, Pedro Júnior MJ, Alfonsi RR, Ortolani AA, Brunini O (1993) Probabilidade de ocorrência de temperaturas mínimas absolutas mensais e anuais no Estado de São Paulo. Bragantia 52:161–168

    Article  Google Scholar 

  • Campoe OC, Munhoz JS, Alvares CA, Carneiro RL, Mattos EM, Ferez APC, Stape JL (2016) Meteorological seasonality affecting individual tree growth in forest plantations in Brazil. For Ecol Manag 380:149–160

    Article  Google Scholar 

  • Cavalcanti IFA, Kousky VE (2009) Frentes frias sobre o Brasil. In: IFA C, Ferreira NJ, da Silva MGA J, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 135–148

    Google Scholar 

  • Conab. Companhia Nacional de Abastecimento (2013) Acompanhamento da safra brasileira de grãos: décimo segundo levantamento, setembro 2013. CONAB, Brasília 30 p. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_09_10_16_05_53_boletim_portugues_setembro_2013.pdf. Acessed at 2 May 2015

    Google Scholar 

  • Crimp S, Bakar K, Kokic P, Jin H, Nicholls N, Howden M (2015) Bayesian space-time model to analyse frost risk for agriculture in Southeast Australia. Int J Climatol 35:2092–2108

    Article  Google Scholar 

  • Dolif Neto G, Market PS, Pezza AB, Morales Rodriguez CA, Calvetti L, Dias S, Leite P, Escobar GC (2016) Thundersnow in Brazil: a case study of 22 July 2013. Atmos Sci Let 17:26–32

    Article  Google Scholar 

  • Erlat E, Türkeş M (2012) Analysis of observed variability and trends in numbers of frost days in Turkey for the period 1950–2010. Int J Climatol 32:1889–1898

    Article  Google Scholar 

  • Estefanel V, Ferreira M, Buriol GA, Pinto HS (1973) Estimation of monthly and annual minimum temperatures of Rio Grande do Sul state. Rev Cent Cienc Rurais 3:1–20

    Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data. Am Geophys Union Eos 81:583–585

    Article  Google Scholar 

  • Ferreira M (1976) Melhoramento genético de Eucalyptus: efeitos das geadas de julho de 1975. Boletim Informativo IPEF 4:11–26

  • Ferreira M (2015) A aventura dos Eucaliptos. In: Schumacher MV, Viera M (eds) Silvicultura do Eucalipto no Brasil. Santa Maria, Editora UFSM, pp 13–48

    Google Scholar 

  • Ferreira CC, Fontana DC, Berlato MA (2006) Relação entre a temperatura mínima do ar medida no abrigo meteorológico e na relva no Estado do Rio Grande do Sul. Rev Bras Agromet 14:53–63

    Google Scholar 

  • Filgueiras TS, Pereira BAS (1989) Efeito de uma geada sobre a flora do cerrado na reserva ecológica do IBGE-DF-Brasil. Separata de Cadernos de Geociências 2:67–70

    Google Scholar 

  • Flores TB, Alvares CA, Souza VC, Stape JL (2016) Eucalyptus no Brasil: zoneamento climático e guia para identificação. IPEF, Piracicaba

    Google Scholar 

  • Garcia CH, Santos PET (1995) Danos ocasionados pelas geadas no estado de São Paulo. Florestar Estatístico 2:23–24

    Google Scholar 

  • Gatti MG, Campanello PI, Montti LF, Goldstein G (2008) Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. For Ecol Manag 256:633–640

    Article  Google Scholar 

  • Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JP, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27

    Article  Google Scholar 

  • Grodzki L, Caramori PH, Bootsma A, Oliveira D, Gomes J (1996) Riscos de ocorrência de geada no Estado do Paraná. Rev Bras Agromet 4:93–99

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Higa AR, Garcia CH, Santos PET (1995) Geadas, prejuízos a atividade florestal. Silvicultura 16:40–43

    Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Ibge (2013) Brazilian Institute of Geography and Statistics. Indicadores-Estatística da Produção Agrícola. IBGE, Brasília Available at: http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/estProdAgr_201309.pdf. Acessed at 2 May 2015

    Google Scholar 

  • James PE (1932) The coffee lands of southeastern Brazil. Geogr Rev 22:225–244

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. Available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org. Accessed at 15 February 2010

  • Jong R, Schaepman ME, Furrer R, Bruin S, Verburg PH (2013) Spatial relationship between climatologies and changes in global vegetation activity. Glob Chang Biol 19:1953–1964

    Article  Google Scholar 

  • Kessler M, Krömer T (2000) Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biol 2:659–669

    Article  Google Scholar 

  • King DA, Ball MC (1998) A model of frost impacts on seasonal photosynthesis of Eucalyptus pauciflora. Funct Plant Biol 25:27–37

    Google Scholar 

  • Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16:1197–1226

    Article  Google Scholar 

  • Liu B, Henderson M, Xu M (2008) Spatiotemporal change in China’s frost days and frost-free season, 1955–2000. J Geophys Res 113(D12):D1204

    Article  Google Scholar 

  • Loik ME, Still CJ, Huxman TE, Harte J (2004) In situ photosynthetic freezing tolerance for plants exposed to a global warming manipulation in the Rocky Mountains, Colorado, USA. New Phytol 162:331–341

    Article  Google Scholar 

  • Louw JH, Germishuizen I, Smith CW (2011) A stratification of the South African forestry landscape based on climatic parameters. Southern Forests 73:51–62

    Article  Google Scholar 

  • Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26:1025–1038

    Article  Google Scholar 

  • Medeiros SS, Cecílio RA, Melo Júnior JCF, Silva Junior JLC (2005) Estimation and spatialization of minimum, mean and maximum air temperatures for the Northeast region of Brazil. Rev Bras Eng Agric Ambient 9:247–255

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mota FS (1981) Meteorologia agrícola. Nobel, São Paulo

    Google Scholar 

  • Nave AG, Rodrigues RR (2007) Combination of species into filling and diversity groups as forest restoration methodology. In: Rodrigues RR, Martins SV, Gandolfi S (eds) High diversity forest restoration in degraded areas: methods and projects in Brazil. Nova Science Publishers, New York, pp 103–126

    Google Scholar 

  • Nimer E (1989) Climatologia do Brasil, 2nd edn. IBGE, São Paulo

    Google Scholar 

  • Ning L, Bradley RS (2015) Influence of eastern Pacific and central Pacific El Niño events on winter climate extremes over the eastern and central United States. Int J Climatol 35:4756–4770

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • d'Oliveira LTM (1863) Novo methodo da plantação: fecundidade, durabilidade, estrumação e conservação do café e extincção das formigas exposto em beneficio da agricultura do Brasil e lugares cafeeiros, offerecido aos agricultores. Typographia Paula Brito, Rio de Janeiro

    Google Scholar 

  • Oliveira Neto SN, Reis GG, Reis MGF, Leite HG, Costa JMN (2002) Estimating the minimum, medium and maximum temperatures in Brazilian territory located between 16 and 24° south latitude and 48 and 60° west longitude. Eng Agric 10:8–17

    Google Scholar 

  • Ometto JC (1981) Bioclimatologia vegetal. Agronômica Ceres, São Paulo

    Google Scholar 

  • Ormsby T, Napoleon E, Burke R, Groessl C, Bowden L (2010) Getting to know ArcGIS Desktop: updated for ArcGIS 10, 2nd edn. ESRI Press, Redlands

    Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Livraria e Editora Agropecuária, Guaíba

    Google Scholar 

  • Pezzopane JRM, Santos EA, Eleutério MM, Reis EF, Santos AR (2004) Spatial distribution of air temperature in the state of Espirito Santo. Rev Bras Agrometeorol 12:151–158

    Google Scholar 

  • Pinto HS, Alfonsi RR (1974) Estimation of mean, maximum and minimum monthly temperatures of Paraná state, as a function of altitude and latitude. Cad Cienc Terra 52:1–28

    Google Scholar 

  • Queiroz DL, Majer J, Burckhardt D, Zanetti R, Fernandez JIR, Queiroz EC, Garrastazu M, Fernandes BV, Anjos N (2013) Predicting the geographical distribution of Glycaspis brimblecombei (Hemiptera: Psylloidea) in Brazil. Aust J Entomol 52:20–30

    Article  Google Scholar 

  • Rodríguez-lado L, Sparovek G, Vidal-Torrado P, Dourado-Neto D, Macías-Vásquez F (2007) Modelling air temperature for the state of São Paulo, Brazil. Sci Agric 64:460–467

    Article  Google Scholar 

  • Safford HD (1999) Brazilian Páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Article  Google Scholar 

  • Salis SM, Shepherd GJ, Joly CA (1995) Floristic comparison of mesophytic semideciduous forests of the interior of the state of São Paulo, Southeast Brazil. Vegetatio 119:155–164

    Article  Google Scholar 

  • Sediyama GC, Melo Júnior JCF (1998) Mathematical models for the estimation of the monthly mean maximum, minimum and annual air temperature of the state of Minas Gerais. Eng Agric 6:57–61

    Google Scholar 

  • Seluchi ME (2009) Geadas e friagens. In: IFA C, Ferreira NJ, da Silva MGA J, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 149–168

    Google Scholar 

  • Sentelhas PC, Ortolan AA, Pezzopane JRM (1995) Estimativa da temperatura mínima de relva e da diferença de temperatura entre o abrigo e a relva em noites de geada. Bragantia 54:437–445

    Article  Google Scholar 

  • Setzer J (1966) Atlas climático e ecológico do Estado de São Paulo. Comissão Interestadual da Bacia Paraná-Uruguai, São Paulo, Brazil

    Google Scholar 

  • Silberbauer-Gottsberger I, Morawetz W, Gottsberger G (1977) Frost damage of cerrado plants in Botucatu, Brazil, as related to the geographical distribution of the species. Biotropica 9:253–261

    Article  Google Scholar 

  • Silva JG, Sentelhas PC (2001) Diferença de temperatura mínima do ar medida no abrigo e na relva e probabilidade de sua ocorrência em eventos de geada no Estado de Santa Catarina. Rev Bras Agrometeor 9:9–15

    Google Scholar 

  • Silva DE, Mazzella PR, Legay M, Corcket E, Dupouey JL (2012) Does natural regeneration determine the limit of European beech distribution under climatic stress? For Ecol Manag 266:263–272

    Article  Google Scholar 

  • Soares-Colletti AR, Alvares CA, Sentelhas PC (2016) An agro-climatic approach to determine citrus postbloom fruit drop risk in Southern Brazil. Int J Biometeorol 60:891–905

    Article  Google Scholar 

  • Stafne ET (2008) Indices for assessing site and winegrape cultivar risk for spring frost. Int J Fruit Sci 7:121–132

    Article  Google Scholar 

  • Tannus JL, Assis MA, Morellato LPC (2006) Fenologia reprodutiva em campo sujo e campo úmido numa área de cerrado no sudeste do Brasil, Itirapina-SP. Biota Neotrop 6:1–27

    Article  Google Scholar 

  • Terando A, Easterling WE, Keller K, Easterling DR (2012) Observed and modeled twentieth-century spatial and temporal patterns of selected agro-climate indices in North America. J Clim 25:473–490

    Article  Google Scholar 

  • Theobald DM (2007) GIS concepts and ArcGIS methods, 3rd edn. Conservation Planning Technologies, Fort Collins

    Google Scholar 

  • Tomlin CD (1990) Geographic information systems and cartographic modelling. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Tortorelli LA (1964) Efeitos catastróficos do fogo nos bosques do Paraná: exemplo a ser difundida na América Latina. Anuário Brasileiro de Economia Florestal 16:71–74

    Google Scholar 

  • Utra GRP (1919) As geadas e os meios possíveis de prevenir ou atenuar os seus efeitos sobre a vegetação. Secretaria da Agricultura, São Paulo

    Google Scholar 

  • Ward R (1911) The economic climatology of the coffee district of Sao Paulo, Brazil. Bull Geol Soc Am 43:428–445

    Google Scholar 

  • Waring RH (2000) A process model analysis of environmental limitations on the growth of Sitka spruce plantations in Great Britain. Forestry 73:65–79

    Article  Google Scholar 

  • Waring RH, MCDowell N (2002) Use of a physiological process model with forestry yield tables to set limits on annual carbon balances. Tree Physiol 22:179–188

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094

    Article  Google Scholar 

  • Wrege MS, Steinmetz S, Reisser-Junior C, Almeida IR (2011) Atlas climático da Região Sul do Brasil: estados do Paraná, Santa Catarina e Rio Grande do Sul. Embrapa Clima Temperado/Embrapa Florestas, Pelotas, Colombo

    Google Scholar 

  • Wypych A, Ustrnul Z, Sulikowska A, Chmielewski FM, Bochenek B (2016) Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int J Climatol. https://doi.org/10.1002/joc.4920

    Article  Google Scholar 

  • Xavier AC, King CW, Scanlon BR (2016) Daily gridded meteorological variables in Brazil (1980–2013). Int J Climatol 36:2644–2659

    Article  Google Scholar 

  • Zheng B, Chapman SC, Christopher JT, Frederiks TM, Chenu K (2015) Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot 66:3611–3623

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the meteorological institutes of the states of São Paulo (IAC/CIIAGRO, www.ciiagro.sp.gov.br), of Santa Catarina (EPAGRI, http://ciram.epagri.sc.gov.br), and of Paraná (IAPAR, www.iapar.br; SIMPEAR, www.simepar.br) and to the National Meteorological Institute (INMET, www.inmet.gov.br) for providing air temperature data used in this study. We thank the undergraduate students, Ana Carolina L. C. de Paula and Giovanna Samesima, from USP/ESALQ, for the support in compiling and data processing. Most of this paper was written when the first author lived in Raleigh, North Carolina, during the winter of 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Alcarde Alvares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvares, C.A., Sentelhas, P.C. & Stape, J.L. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil. Theor Appl Climatol 134, 177–191 (2018). https://doi.org/10.1007/s00704-017-2267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2267-6

Navigation