Skip to main content

Advertisement

Log in

Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, Northwest China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Xinjiang is an important maize cultivation area in Northwest China. Investigating the relationship between meteorological drought and climate-driven maize yield can help to mitigate the negative impacts of drought on agricultural production in Xinjiang. In this study, multi-source data, including meteorological, agricultural, and socio-economic data, are collected to analyze the spatiotemporal patterns of drought and assess drought disaster risk. The standardized precipitation evapotranspiration index is calculated to classify different drought grades in the study area. The main results are as follows: (1) the relationship between drought and climate-driven maize yield is determined using a stepwise regression analysis, which indicates that drought conditions occurring from May to July are crucial for the yield in Xinjiang; (2) the modified Mann-Kendall test detects that the frequency-intensity-coverage of drought from May to July shows a decreasing tendency as a whole in the study area; (3) the correlation analysis shows that the multivariate ENSO index may be the dominant force in regional drought evolution; and (4) a drought disaster risk assessment system is constructed based on principles of natural disaster management. The drought disaster risk is higher in southwestern and northwestern Xinjiang, areas that should deserve more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araujo JA, Abiodun BJ, Crespo O (2016) Impacts of drought on grape yields in Western Cape, South Africa. Theor Appl Climatol 123(1):117–130

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical Paper. Intergovernmental Panel on Climate Change (IPCC) Secretariat, Geneva

  • Bond NR, Lake PS, Arthington AH (2008) The impacts of drought on freshwater ecosystem: an Australian perspective. Hydrobiologia 600:3–16

    Article  Google Scholar 

  • Buttafuoco G, Caloiero T, Coscarelli R (2015) Analyses of drought events in Calabria (Southern Italy) using standardized precipitation index. Water Resour Manag 29:557–573

    Article  Google Scholar 

  • Chen J, Wang YH (2012) Precipitation pattern of desert steppe in Inner Mongolia, Sunite Left Banner: 1956–2009. Acta Ecol Sin 32(22):6925–6935

    Article  Google Scholar 

  • Chen YN, Deng HJ, Li BF, Li Z, Xu CC (2014) Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quatern Int 336:35–43

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134

    Article  Google Scholar 

  • Fisher M, Abate T, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB (2015) Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Clim Chang 133(2):283–299

    Article  Google Scholar 

  • Han LY, Zhang Q, Ma PJ, Jia JY, Wang JS (2015) The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1432-z

  • He B, Lv AF, Wu JJ, Zhao L, Liu M (2011) Drought hazard assessment and spatial characteristics analysis in China. J Geogr Sci 21(2):235–249

    Article  Google Scholar 

  • Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Amer Meteor Soc 83:1149–1165

    Article  Google Scholar 

  • Huang J, Lei YD, Zhang FM, Hu ZH (2017) Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China. Food Sec 9(4):661–672

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Summary for Policymakers of Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U. K

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). (Available online: <http://srtm.csi. cgiar.org>)

  • Jeong DI, Sushama L, Khaliq MN (2014) The role of temperature in drought projections over North America. Clim Chang 127:289–303

    Article  Google Scholar 

  • Jiang FQ, Hu RJ, Wang SP, Zhang YW, Tong L (2013) Trends of precipitation extremes during 1960-2008 in Xinjiang, the Northwest China. Theor Appl Climatol 111:133–148

    Article  Google Scholar 

  • Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Chang 75:273–299

    Article  Google Scholar 

  • Li C, Wang R (2016) Recent changes of precipitation in Gansu, Northwest China: An index-based analysis. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1783-0

  • Li XW, Gao XZ, Wang JK, Guo HD (2015) Microwave soil moisture dynamics and response to climate change in Central Asia and Xinjiang Province, China, over the last 30 years[J]. J Appl Remote Sens 9(1):096012

    Article  Google Scholar 

  • Liu YT, Du H, Li LH, Yin B, Chen SB, Guo B (2012) Agricultural climatic resources of Xinjiang maize production and its production potential estimation[J]. Xinjiang Agr Sci 49(10):1908–1913

    Google Scholar 

  • Liu Y, Liu BC, Yang XJ, Bai W, Wang J (2014) Relationships between drought disasters and crop production during ENSO episodes across the North China Plain. Reg Environ Chang 15:1–13

    Google Scholar 

  • Ming B, Guo YQ, Tao HB, Liu GZ, Li SK, Wang P (2015) SPEIPM-based research on drought impact on maize yield in North China Plain. J Integr Agr 14(4):660–669

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):204–216

    Google Scholar 

  • Özger M, Mishra AK, Singh VP (2009) Low frequency drought variability associated with climate indices. J Hydrol 364:152–162

    Article  Google Scholar 

  • Patel NR, Chopra P, Dadhwal VK (2007) Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol Appl 14:329–336

    Article  Google Scholar 

  • Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability towards natural hazards: the disaster risk index. Nat Hazards Earth Syst Sci 9:1149–1159

    Article  Google Scholar 

  • Pinzon JE, Tucker CJ (2014) A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens 6:6929–6960

    Article  Google Scholar 

  • Potop V, Možný M, Soukup J (2012) Drought at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agric For Meteorol 156:121–133

    Article  Google Scholar 

  • Quijano JA, Jaimes MA, Torres MA, Reinoso E, Castellanos L, Escamilla J, Ordaz M (2015) Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions. Nat Hazards 76(2):1297–1318

    Article  Google Scholar 

  • Raja R, Nayak AK, Panda BB, Lal B, Tripathi B, Shahid M, Kumar A, Mohanty S, Samal P, Gautam P, Rao KS (2014) Monitoring of meteorological drought and its impact on rice (L.) productivity in Odisha using standardized precipitation index. Arch Agron Soil Sci 60(12):1701–1715

    Article  Google Scholar 

  • Shi WJ, Tao FL (2014) Vulnerability of African maize yield to climate change and variability during 1961–2010. Food Sec 6(4):471–481

    Article  Google Scholar 

  • Shi YF, Shen YP, Kang ES, Li DL, Ding YJ, Zhang GW, Hu RJ (2007) Recent and future climate change in northwest China. Clim Chang 80:379–393

    Article  Google Scholar 

  • Shuai JB, Zhang Z, Tao FL, Shi PJ (2016) How ENSO affects maize yields in China: understanding the impact mechanisms using a process-based crop model. Int J Climatol 36:424–438

    Article  Google Scholar 

  • Song YL, Zhao YX (2012) Effects of drought on winter wheat yield in North China during 2012-2100. Acta Meteor Sin 26(4):516–528

    Article  Google Scholar 

  • Spinoni J, Naumann G, Vogt J, Barbosa (2015) European drought climatologies and trends based on a multi-indicator approach. Glob Planet Chang 127:50–57

    Article  Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Nino in the 21st century? J Clim 25:2129–2145

    Article  Google Scholar 

  • Su MF, Wang HJ (2007) Relationship and its instability of ENSO-Chinese variations in droughts and wet spells. Sci China Earth Sci 50(1):145-152

  • Tong ZJ, Zhang JQ, Liu XP (2008) GIS-based risk assessment of grassland fire disaster in western Jilin Province, China. Stoch Env Res Ris A 23:463–471

    Google Scholar 

  • Trigo RM, Gouveia CM, Barriopedro D (2010) The intense 2007-2009 drought in the fertile crescent: impacts and associated atmospheric circulation. Agric For Meteorol 150(9):1245–1257

    Article  Google Scholar 

  • Varazanashvili O, Tsereteli N, Amiranashvili A, Tsereteli E, Elizbarashvili E, Olidze J, Qaldani L, Saluqvadze M, Adamia S, Arevazde N, Gventcadze A (2012) Vulnerability, hazards and multiple risk assessment for Georgia. Nat Hazards 64:2021–2056

    Article  Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index. J Hydrometeorol 11:1033–1043

    Article  Google Scholar 

  • Wang RH, Li C (2015) Spatiotemporal analysis of precipitation trends during 1961-2010 in Hubei province, central China. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1426-x

  • Wang A, Lettenmaier DP, Sheffield J (2011) Soil moisture drought in China, 1950-2006. J Clim 24:3257–3271

    Article  Google Scholar 

  • Wang HJ, Chen YN, Pan YP (2015) Characteristics of drought in the arid region of northwestern China. Clim Res 62:99–113

    Article  Google Scholar 

  • Wu YN, Zhong PA, Zhang Y, Xu B, Ma B, Yan K (2015) Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China. Nat Hazards 78:635–651

    Article  Google Scholar 

  • Zeng N (2003) Drought in the Sahel. Science 302:999–1000

    Article  Google Scholar 

  • Zhang TY, Lin XM (2016) Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas. Sci Total Environ 550:851–860

    Article  Google Scholar 

  • Zhang Q, Li JF, Singh VP, Bai YG (2012) SPI-based evaluation of drought events in Xinjiang, China. Nat Hazards 2012(64):481–492

    Article  Google Scholar 

  • Zhang Q, Sun P, Li JF, Singh PV, Liu JY (2014) Spatiotemporal properties of droughts and related impacts on agriculture in Xinjiang. Int J Climatol 35:1254–1266

    Article  Google Scholar 

  • Zhang Q, Han LY, Jia JY, Song LL, Wang JS (2015) Management of drought risk under global warming. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1503-1

  • Zhao TB, Dai AG (2015) The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Clim 28:4490–4512

    Article  Google Scholar 

Download references

Acknowledgements

Four scientific funds [the National Key Technology R&D Program of China (No. 2012BAD16B0305, 2012BAC23B01), the Clean Development Mechanism Fund of China (No. 2013013), and the Postgraduates Innovation Program of Jiangsu (KYLX15_0871)] and two data centers of science [http://midasia.data.ac.cn/ and http://www.resdc.cn] supported our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, R., Ning, H. et al. Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, Northwest China. Theor Appl Climatol 133, 1269–1278 (2018). https://doi.org/10.1007/s00704-017-2259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2259-6

Navigation