Skip to main content

Advertisement

Log in

Modeling of a severe winter drought in eastern China using different initial and lateral boundary forcing datasets

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper describes the performance of the Regional Atmospheric Modeling System (RAMS) in simulating a winter drought event, based on two different forcing datasets. We ran EC (ERA-Interim reanalysis data as initial and lateral boundary forcing conditions) and FNL (NCEP-FNL reanalysis data) simulations for the 2008/2009 winter drought event to quantify the impact of any uncertainty in the different initial and lateral boundary forcing data on regional model outputs. The response of the winter mean atmospheric states to the variations in the initial and lateral boundary conditions was investigated on the basis of these simulation results. The spatio-temporal features of precipitation from the EC and FNL runs closely resembled those measured from the Global Summary Of the Day (GSOD) observations, although the EC run data outperformed the FNL run data in both their spatial distribution patterns and precipitation values. The water vapor flux values explain how the differences in the precipitation values between the EC and the FNL runs were generated, whereas temperature values were not sensitive to any changes in forcing data. The model results from these runs also slightly overestimated temperature on both spatial and temporal scales. For the tropospheric atmospheric data recorded at the Fuyang Meteorological Station in Anhui Province, neither the time series nor the statistical analyses showed any evidence of superiority between the two different driver datasets compared with radiosonde data. However, on closer inspection, the influence of different initial and lateral boundary conditions on modeling the tropospheric atmospheric data appeared to be evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arritt RW, Rummukainen M (2011) Challenges in regional-scale climate modeling. Bull Am Meteorol Soc 92:365. doi:10.1175/2010BAMS2971.1

    Article  Google Scholar 

  • Brands S, Gutiérrez JM, Herrera S et al (2012) On the use of reanalysis data for downscaling. J Clim 25(7):2517–2526. doi:10.1175/jcli-d-11-00251.1

    Article  Google Scholar 

  • Castro CL, Sr RAP, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (rams). J Geophys Res Atmos 110(D5):851–862. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Castro CL, Pielke RA, Adegoke JO (2007) Investigation of the summer climate of the contiguous United States and Mexico using the regional atmospheric modeling system(RAMS). Part I: model climatology (1950–2002). J Clim 20:3844–3865. doi:10.1175/JCLI4212.1

    Article  Google Scholar 

  • Chen W (2002) Impacts of el Nino and la Nina on the cycle of the East Asian winter and summer monsoon. Chin J Atmos Sci 26:595–610

    Google Scholar 

  • Chen W, Graf HF, Huang R (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 01:48–60. doi:10.1007/s00376-000-0042-5

    Google Scholar 

  • Cotton WR et al (2003) RAMS 2001:current status and future directions. Meteorog Atmos Phys 82:5–29. doi:10.1007/s00703-001-0584-9

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi:10.1175/JHM-386.1

    Article  Google Scholar 

  • Druyan LM, Feng J, Cook KH et al (2010) The WAMME regional model intercomparison study. Clim Dyn 35(1):175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • European Centre for Medium-Range Weather (2009) ERA-Interim project, in, research data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory, Boulder

    Google Scholar 

  • Harrington JY (1997) The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus (Doctoral dissertation, Colorado State University)

  • Hasler N, Avissar R, Liston GE (2005) Issues in simulating the annual precipitation of a semiarid region in Central Spain. J Hydrometeorol 6:409–422. doi:10.1175/JHM418.1

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorog Atmos Phys 63(1):119–129. doi:10.1007/B F01025368

    Article  Google Scholar 

  • Jiang P, Ye S, Chen D, Liu Y, Xia P (2016) Retrieving precipitable water vapor data using gps zenith delays and global reanalysis data in china. Remote Sens 8(5):389. doi:10.3390/rs8050389

    Article  Google Scholar 

  • Kain JS (1993) Convective parametrization for mesoscale models: the Kain-Fritsch scheme[J]. Meteorol Monogr 46:165–170. doi:10.1007/978-1-935704-13-3_16

    Google Scholar 

  • Kim J, Waliser DE, Mattmann CA et al (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn 42(5–6):1189–1202. doi:10.1007/s00382-013-1751-7

    Article  Google Scholar 

  • Li Z, Song L, Ma H et al (2017) Observed surface wind speed declining induced by urbanization in East China. Clim Dyn. doi:10.1007/s00382-017-3637-6

  • Liang XZ, Kunkel KE, Samel AN, Kunkel KE, Samel AN (2001) Development of a regional climate model for U.S. Midwest applications. Part I: sensitivity to buffer zone treatment. J Clim 14:4363–4378. doi:10.1175/1520-0442(2001)014<4363:DOARCM>2.0.CO;2

    Article  Google Scholar 

  • Liang XZ, Li L, Kunkel KE, Ting M, Wang JXL (2004) Regional climate model simulation of U.S. precipitation during 1982-2002. Part I: annual cycle. J Clim 17:3510–3529. doi:10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2

    Article  Google Scholar 

  • Liu L, Zuo RZA (2014) Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern china. J Geophys Res Atmos 1(1):54–64. doi:10.1002/2013JD020940

    Article  Google Scholar 

  • Lu L, Shuttleworth WJ (2002) Incorporating NDVI-derived LAI into the climate version of rams and its impact on regional climate. J Hydrometeorol 3:347–362. doi:10.1175/1525-7541(2002)003

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806. doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

    Article  Google Scholar 

  • Meng C, Ma Y, Han C, Gou P (2016) Effect of reducing the topographical altitude of the Tibetan Plateau on a severe winter drought in eastern China as determined using RAMS[J]. Theor Appl Climatol. doi:10.1007/s00704-016-1817-7

  • National Centers for Environmental Prediction, N. W. S., NOAA, U. S. Department of Commerce (2000) NCEP FNL operational model global tropospheric analyses, continuing from July 1999[C]// research data Archive at the National Center for Atmospheric Research, computational and information systems Laboratory. Boulder, CO

  • Pielke RA Sr, Wilby RL (2012) Regional climate downscaling: what's the point? Eos trans. AGU 93–52

  • Pielke R et al (1992) A comprehensive meteorological modeling system-RAMS. Meteorog Atmos Phys 49:69–91. doi:10.1007/BF01025401

    Article  Google Scholar 

  • Saleeby SM, Cotton WR (2004) Simulations of the north American monsoon system. Part I: model analysis of the 1993 monsoon season. J Clim 17:1997–2018. doi:10.1175/1520-0442(2004)017<1997:SOTNAM>2.0.CO;2

    Article  Google Scholar 

  • Saleeby SM, van den Heever SC (2013) Developments in the CSU-RAMS aerosol model: emissions, nucleation, regeneration, deposition, and radiation. J Appl Meteorol Climatol 52:2601–2622. doi:10.1175/JAMC-D-12-0312.1

    Article  Google Scholar 

  • Simmons AJ, Uppala SM, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. Ecmwf Newsletter 110:25–35

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2005) A description of the advanced research WRF version 2. NCAR tech notes-468 + STR

  • Song, L. C., Z. Y. Deng, and A. X. Dong (2003) Drought, China Meteorol. Press, Beijing

  • Tao S, Wei J, Sun J, Zhao S (2009) The severe drought in East China dring November, December and January 2008-2009(in Chinese). Meteorol Mon 35:3–10

    Google Scholar 

  • Vukicevic T, Errico RM (1990) The influence of artificial and physical factors upon predictability estimates using a complex limited-area model. Mon Weather Rev 118:1460–1482. doi:10.1175/1520-0493(1990)118<1460:TIOAAP>2.0.CO;2

    Article  Google Scholar 

  • Walko RL, Tremback CJ (2005) ATMET technical note 1, modifications for the transition from LEAF-2 to LEAF-3, ATMET, LLC, Boulder, Colorado 80308–2195

  • Wang H (2001) The weakening of the Asian monsoon circulation after the end of 1970's. Adv Atmos Sci 18:376–386. doi:10.1007/BF02919316

    Article  Google Scholar 

  • Wang B, Yang H (2008) Hydrological issues in lateral boundary conditions for regional climate modeling: simulation of east asian summer monsoon in 1998. Clim Dyn 31(4):477–490

    Article  Google Scholar 

  • Wang JJ, Hu X, Guo XR (2001) Comparison experiments on cumulus parameterization schemes of the MM5 [J]. Quart J Appl Meteor 12(1):41–53

    Google Scholar 

  • Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78:2599–2617. doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2. 0.CO;2

    Article  Google Scholar 

  • Wu W, Lynch AH, Rivers A (2005) Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. J Clim 18:917–933. doi:10.1175/JCLI-3293.1

    Article  Google Scholar 

  • Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assessment of dynamic downscaling of the continental US regional climate using the eta/SSiB regional climate model. J Clim 20(16):4172–4193. doi:10.1175/JCLI4239.1

    Article  Google Scholar 

  • Xue Y, Janjic Z, Dudhia J et al (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res 147:68–85. doi:10.1016/j.atmosres.2014.05.001

    Article  Google Scholar 

  • Yang H, Wang B, Wang B (2012) Reduction of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn 38(3–4):655–665. doi:10.1007/s00382-011-1006-4

  • Zhang GL (2005) A profile of the south-north water diversion project(in Chinese). Water Conservancy and Hydropower Construction 2:19–27

Download references

Acknowledgements

The authors should like to thank Dr. Lixin Lu and Mr. Steve Saleeby at Colorado State University for their kind support and help in using RAMS. This work was supported by the Chinese Academy of Sciences (Grant No. XDB03030201), the National Natural Science Foundation of China (Grant Nos. 91337212, 41275010, and 41375009), the External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1207), the CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001), the EU-FP7 “CORE-CLIMAX” Project (Grant No. 313085), the Key Projects of China’s national twelfth 5-year Science and Technology Pillar Program (2013BAC09B04), and the Chinese Academy of Sciences “Hundred Talent” program (Dr. Weiqiang Ma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchun Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Ma, Y., Ma, W. et al. Modeling of a severe winter drought in eastern China using different initial and lateral boundary forcing datasets. Theor Appl Climatol 133, 763–773 (2018). https://doi.org/10.1007/s00704-017-2217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2217-3

Navigation