Skip to main content

Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria

Abstract

In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have indicated that the warming may be accompanied by changes in extreme events. This study examined trends in mean and extreme temperatures over Ibadan during 1971–2012 at annual and seasonal scales using the high-resolution atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century dataset (ERA-20C) at 15 grid points. Magnitudes of linear trends in mean and extreme temperatures and their statistical significance were calculated using ordinary least squares and Mann-Kendall rank statistic tests. The results show that Ibadan has witnessed an increase in annual and seasonal mean minimum temperatures. The annual mean maximum temperature exhibited a non-significant decline in most parts of Ibadan. While trends in cold extremes at annual scale show warming, trends in coldest night show greater warming than in coldest day. At the seasonal scale, we found that Ibadan experienced a mix of positive and negative trends in absolute extreme temperature indices. However, cold extremes show the largest trend magnitudes, with trends in coldest night showing the greatest warming. The results compare well with those obtained from a limited number of stations. This study should inform decision-makers and urban planners about the ongoing warming in Ibadan.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abatan AA, Abiodun BJ, Lawal KA, Gutowski WJ Jr (2016) Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int J Climatol 36:2527–2540. doi:10.1002/joc.4510

    Article  Google Scholar 

  2. Abiodun BJ, Lawal KA, Salami AT, Abatan AA (2013a) Potential influences of global warming on future climate and extreme events in Nigeria. Reg Environ Chang 13:477–491

    Article  Google Scholar 

  3. Abiodun BJ, Salami AT, Matthew OJ, Odedokun S (2013b) Potential impacts of afforestation on climate change and extreme events in Nigeria. Climate Dyn 41(2):277–293

    Article  Google Scholar 

  4. Adedokun JA (1978) West African precipitation and dominant atmospheric circulations. Archiv für Meteorologie Geophysik und Bioklimatologie Series A 27:289–310

    Article  Google Scholar 

  5. Aguilar E, Barry AA, Brunet M, Ekang L, Fernandes A, Massoukina M, Mbah J, Mhanda A, do Nascimento DJ, Peterson TC, Umba OT, Tomou M, Zhang X (2009) Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J Geophys Res 114:DO2115. doi:10.1029/2008JD011010

    Article  Google Scholar 

  6. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadel F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  7. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  8. Changnon SA, Kunkel KE, Reinke BC (1996) Impacts and responses to the 1995 heat wave: a call to action. Bull Amer Meteorol Soc 77:1497–1506

    Article  Google Scholar 

  9. Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Env Res 98:390–399. doi:10.1016/j.envres.2004.10.009

    Article  Google Scholar 

  10. Egbinola CN, Amobichukwu AC (2013) Climate variation assessment based on rainfall and temperature in Ibadan, south-western, Nigeria. J Env and Earth Sci 3:32–45

    Google Scholar 

  11. Eludoyin OM, Adelekan IO, Webster R, Eludoyin AO (2014) Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int J Climatol 34:2000–2018. doi:10.1002/joc.3817

    Article  Google Scholar 

  12. ETCCDI, cited as 2016: http://etccdi.pacificclimate.org/indices.shtml (last accessed November 11, 2016)

  13. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contribution of working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 881 pp

    Google Scholar 

  14. Gutowski WJ, Hegerl GC, Holland GJ, Knutson TR, Mearns LO, Stouffer RJ, Webster PJ, Wehner MF, Zwiers FW (2008) Causes of observed changes in extremes and projections of future changes. In: Karl TR, Meehl GA, Christopher DM, Hassol SJ, Waple AM, Murray WL (eds) Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, pp 81–116

    Google Scholar 

  15. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  16. Hartmann DL, AMG KT, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  17. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  18. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp

  19. Johnson H, Kovats RS, McGregor G, Stedman J, Gibbs M, Walton H, Cook L, Back E (2005) The impact of the 2003 heat wave on mortality and hospital admissions in England. Health Statistics Quart 25:6–11

    Google Scholar 

  20. Jones PD, Raper SCB, Bradley RS, Diaz HF, Kelly PM, Wigley TML (1986) Northern hemisphere surface air temperature variations: 1851–1984. J Clim Appl Meteorol 25(2):161–179

    Article  Google Scholar 

  21. Karl TR, Knight RW (1997) The 1995 Chicago heat wave: how likely is a recurrence? Bull Amer Meteorol Soc 78:1107–1119

    Article  Google Scholar 

  22. Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  23. Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and South Asia. J Geophys Res 111:D16105. doi:10.1029/2005JD006316

    Article  Google Scholar 

  24. Kunkel KE, Changnon SA, Reinke BC, Arritt RW (1996) The July 1995 heat wave in the Midwest: a climatic perspective and critical weather factors. Bull Amer Meteorol Soc 77:1507–1518

    Article  Google Scholar 

  25. Mackellar N, New M, Jack C (2014) Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. South African J Sci 110(7/8):51–63

    Article  Google Scholar 

  26. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  27. Odjugo PAO (2010) Regional evidence of climate change in Nigeria. J Geography Reg Planning 3:142–150

    Google Scholar 

  28. Oguntunde PG, Abiodun BJ, Lischeid G (2012a) Spatial and temporal temperature trends in Nigeria, 1901–2000. Meteorog Atmos Phys 118:95–105. doi:10.1007/s00703-012-0199-3

    Article  Google Scholar 

  29. Oguntunde PG, Abiodun BJ, Olukunle OJ, Olufayo AA (2012b) Trends and variability in pan evaporation and other climatic variables at Ibadan, Nigeria, 1973–2008. Meteorol Applications 19:464–472. doi:10.1002/met.281

    Article  Google Scholar 

  30. Patra JP, Mishra A, Singh R, Raghuwanshi NS (2012) Detecting rainfall trends in twentieth century (1871–2006) over Orissa state, India. Clim Chang 111:801–817. doi:10.1007/s1058-011-0215-5

    Article  Google Scholar 

  31. Poli P, Hersbach H, Tan D, Dee D, Thépaut J.-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECWMF pilot reanalysis of the 20th-century assimilation surface observations only (ERA 20C). ERA Report Series no. 14, ECWMF, 59 pp

  32. Rehman S, Al-Hadhrami LM, Mohandes MA (2012) Extreme temperature variability over high topography. Open J Air Pollution 1:1–11. doi:10.4236/ojap.2012.11001

    Article  Google Scholar 

  33. Sangodoyin AY (1992) Wastewater applications: changes in soil properties, livestock response and crop yield. Environ Management and Health 3(1):11–19

    Article  Google Scholar 

  34. Stickler A, Brönnimann S, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM: historical surface and upper-air data for future reanalyses. Bull Amer Meteorol Soc 59(9):1419–1430. doi:10.1175/BAMS-D-13-00147.1

    Article  Google Scholar 

  35. Taiwo OJ, Olaniran HD, Osayomi T (2012) Perceived causes, expoosures and adjustments to seasonal heat in different residential areas in Ibadan, Nigeria. Environmentalist. doi:10.1007/s10669-012-9403-8

    Google Scholar 

  36. Vincent LA, Wang XL, Milewska EJ, Wan H, Feng Y, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res Atmos 117:D18110. doi:10.1029/2012JD017859

    Google Scholar 

  37. Wang XL (2008a) Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47:2423–2444

    Article  Google Scholar 

  38. Wang XL (2008b) Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J Atmos Ocean Technol 25:368–384. doi:10.1175/2007JTECHA982.1

    Article  Google Scholar 

  39. Wang XL, Chen H, Wu Y, Feng Y, Pu Q (2010) New techniques for detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49:2416–2436

    Article  Google Scholar 

  40. World Health Organization (2003) The health impacts of 2003 summer heat waves (briefing note for the delegations of the fifty-third session of the WHO Regional Committee for Europe). pp 12

  41. Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N, Rahimzadeh F, Taghipour A, Hantosh TH, Albert P, Semawi M, Ali MK, Al-Shabibi MHS, Al-Oulan Z, Zatari T, Khelet IAD, Hamoud S, Sagir R, Demircan M, Eken M, Adiguzel M, Alexander L, Peterson TC, Wallis T (2005a) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res 110:D22104. doi:10.1029/2005JD006181

    Article  Google Scholar 

  42. Zhang X, Hegerl G, Zwiers FW, Kenyon J (2005b) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651

    Article  Google Scholar 

  43. Zhang Q, Xu C-Y, Zhang Z, Chen YD (2009) Changes of temperature extremes for 1960–2004 in far-West China. Stochastic Environ Res Risk Assessment 23:721–735. doi:10.1007/s00477-008-0252-4

    Article  Google Scholar 

Download references

Acknowledgements

The calculations and analyses were carried using the NCAR Command Language (version 6.3.0). The work was supported in part by the National Science Foundation through Earth System Modeling (EaSM) Grant AGS-1243030; the Federal University of Technology, Akure; and Obafemi Awolowo University, Ile-Ife, Nigeria. The fourth author was partly supported by National Research Foundation, South Africa.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abayomi A. Abatan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abatan, A.A., Osayomi, T., Akande, S.O. et al. Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria. Theor Appl Climatol 131, 1261–1272 (2018). https://doi.org/10.1007/s00704-017-2049-1

Download citation

Keywords

  • Trends
  • Absolute indices
  • Temperatures
  • Ibadan
  • Nigeria