Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

Abstract

A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached −3.47 W m−2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation 2 multiple aerosol types. J Geophys Res 105:6837–6844

    Article  Google Scholar 

  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  3. An J, Ueda H, Wang Z, Matsuda Z, Kajino K, Cheng X (2002) Simulations of monthly mean nitrate concentrations in precipitation over East Asia. Atmos Environ 36(26):4159–4171

    Article  Google Scholar 

  4. Barnes WL, Pagano TS, Salomonson VV (1998) Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sens 36(4):1088–1100

    Article  Google Scholar 

  5. Bauer S, Menon S (2012) Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions. J Geophys Res 117:D01206. doi:10.1029/2011JD016816

    Article  Google Scholar 

  6. Benkovitz CM, Schultz MT, Pacyna J, Tarrason L, Dignon J, Voldner EC, Spiro PA, Logan A, Graedel TE (1996) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J Geophys Res 101(29):239–253

    Google Scholar 

  7. Binkowski FS, Shankar U (1995) The regional particulate model, 1, model description and preliminary results. J Geophys Res 100:26191–26209

    Article  Google Scholar 

  8. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, and co-authors (2013) Clouds and aerosols. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, co-authors (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp. 571–658

  9. Che H, Xia X, Zhu J, Wang H, Wang Y, Sun J, Zhang X, Shi G (2014) Aerosol optical properties under the condition of heavy haze over an urban site of Beijing China. Environ Sci Pollut Res 22(2):1043–1053

    Article  Google Scholar 

  10. Chen Y, Penner JE (2005) Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos Chem Phys 5:2935–2948

    Article  Google Scholar 

  11. Cotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) RAMS 2001: Current status and future directions. Meteorog Atmos Phys 82(1–4):5–29

  12. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, van de Berg L, Bidlot J, Bormann N, Delsol C, Dargani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Holm E, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally A, Monge-Sanz B, Morcrette J, Park B, Peubey C, de Rosnay P, Tavolato C, Thepaut J, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  13. Ge C, Zhang M, Han Z, Liu Y (2011) Episode simulation of Asian dust storms with an air quality modeling system. Adv Atmos Sci 28(3):511–520

    Article  Google Scholar 

  14. Gettelman A, Morrison H, Ghan S (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3) part II: single-column and global results. J Clim 21:3660–3679

    Article  Google Scholar 

  15. Ghan S, Rahul AZ (2007) Parameterization of optical properties for hydrated internally mixed aerosol. J Geophys Res 112:D10201. doi:10.1029/2006JD007927

    Article  Google Scholar 

  16. Ghan S, Easter RC, Chapman EG, Avdul-Razzak H, Zhang Y, Leung LR, Laulainen NS, Saylor RD, Zaveri AZ (2001) A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J Geophys Res 106:5279–5293

    Article  Google Scholar 

  17. Ghan S, Liu X, Easter R, Zaveri R, Rasch P, Yoon J, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25:6461–6476

    Article  Google Scholar 

  18. Han Q, Rossow WB, Chou J, Welch RM (1998a) Global variation of column droplet concentration in low-level clouds. Geophys Res Lett 25:1419–1422

    Article  Google Scholar 

  19. Han X, Zhang MG, Han ZW, Xin JY, Liu X (2011) Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia. Atmos Environ. doi:10.1016/jatmosenv201108006

    Google Scholar 

  20. Han X, Zhang MG, Tao JH, Wang LL, Gao J, Wang SL (2013) Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-CMAQ. Atmos Environ 72:177–191

    Article  Google Scholar 

  21. Han X, Zhang M G, Zhu L Y, Skorokhod A, (2015) Assessment of the impact of emissions reductions on air quality over North China Plain. Atmos Pollut Res, In Press

  22. Hansen J, Sato MKI, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G (2005) Efficacy of climate forcings. J Geophys Res 110. doi:10.1029/2005JD005776

  23. Hollben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 16:1–16

    Article  Google Scholar 

  24. Huang Y, Chameides WL, Dickinson RE (2007) Direct and indirect effects of anthropogenic aerosols on regional precipitation over East Asia. J Geophys Res 112:D03212. doi:10.1029/2006JD007114

    Article  Google Scholar 

  25. Kim J, Cho S (2003) A numerical simulation of present and future acid deposition in North East Asia using a comprehensive acid deposition model. Atmos Environ 37:3375–3383

    Article  Google Scholar 

  26. Kim B, Han J, Park S (2001) Transport of SO2 and aerosol over the Yellow Sea. Atmos Environ 35:727–737

    Article  Google Scholar 

  27. Kreidenweis SM, Koehler K, DeMott PJ, Prenni AJ, Carrico C, Ervens B (2005) Water activity and activation diameters from hygroscopicity data—part I: theory and application to inorganic salts. Atmos Chem Phys 5:1357–1370

    Article  Google Scholar 

  28. Li S, Wang T, Zhuang B, Han Y (2009) Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv Atmos Sci 26(3):543–552

    Article  Google Scholar 

  29. Li J, Wang W, Liao H, Chang W (2014) Past and future direct radiative forcing of nitrate aerosol in East Asia. Theor Appl Climatol. doi:10.1007/s00704-014-1249-1

    Google Scholar 

  30. Li M, Zhang Q, Kurokawa J, Woo H, He K, Lu Z, Ohara T, Song Y, Streets D, Carmichael G, Cheng Y, Huo H, Liu F, Su H, Zhang B (2015) MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmos Chem Phys Discuss 15:34813–34869

    Article  Google Scholar 

  31. Liu C, Moncrieff MW (2006) Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Amer Meteor Soc 135:2854–2868

    Google Scholar 

  32. Liu X, Xie X, Yin Z, Liu C, Gettelman A (2011) A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor Appl Climatol 106:343–354

    Article  Google Scholar 

  33. Lohmann U, Stier P, Hoose C, Ferrachat S, Kloster S, Roeckner E, Zhang J (2007) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys 7:3425–3446

    Article  Google Scholar 

  34. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864

    Article  Google Scholar 

  35. Mavromatidis E, Lekas TI, Kallos G (2007) Analysis of a two-layer cloud system with RAMS model and comparison to airborne observations. Environ Fluid Mech 7:537–568

    Article  Google Scholar 

  36. McFiggans G, Artaxo P, Baltensberger U, Coe H, Facchini M, Feingold G, Fuzzi S (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6:2593–2649

    Article  Google Scholar 

  37. Myhre G, Shindell D, Breon, F M, Collins W, Fuglestvedt J, and co-authors (2013) Anthropogenic and natural radiative forcing. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, co-authors (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp. 659–740

  38. Nakajima T, Sekiguchi M, Takemura T, Uno I, Higurashi A, Kim D, Sohn B, Oh SN, Nakajima TY, Ohta S, Okada I, Takamura T, Kawamoto K (2003) Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J Geophys Res 108(D23):8658. doi:10.1029/2002JD003261

    Article  Google Scholar 

  39. Nenes A, Pilinis C, Pandis SN, Christodoulos P (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos Environ 33:1553–1560

    Article  Google Scholar 

  40. Ohara T, Akomoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:6843–6902

    Article  Google Scholar 

  41. Olivier JGJ, Bouwman AF, Maas CWM, Van der Maas WM, Berdowski JJM (1994) Emission database for global atmospheric research. Environ Monit Assess 31(1–2):93–106

    Article  Google Scholar 

  42. Platnick S, King M D, Wind G, Arnold T, McGill M, Ackerman S A, Holz R, Baum B A, Yang P (2007) Mulitlayer cloud detection in the MODIS collection 5 cloud product. In hyperspectral imaging and sounding of the environment, p. JWA15. Optical Society of America

  43. Reynolds R, Smith T, Liu C, Chelton D, Casey K, Schlax M (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  44. Rissler J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P (2004) Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition—comparison of modeled and measured CCN concentrations. J Geophys Res 4:2119–2143

    Google Scholar 

  45. Rotstayn LD, Liu Y (2003) Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J Clim 16:3476–3481

    Article  Google Scholar 

  46. Sarwar G, Luecken D, Yarwood G, Whitten GZ, Carter WPL (2008) Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: preliminary assessment. J Appl Meteor Climatol 47:3–14

    Article  Google Scholar 

  47. Slingo A (1989) A GCM parameterization for the shortwave radiative properties of water clouds. J Atmos Sci 46:1419–1427

    Article  Google Scholar 

  48. Stephens GL, Van Den Heever S, Pakula L (2008) Radiative–convective feedbacks in idealized states of radiative–convective equilibrium. Amer Meteor Soc 65:3899–3916

    Google Scholar 

  49. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature. doi:10.1038/nature08281

    Google Scholar 

  50. Streets DG, Waldhoff ST (2000) Present and future emissions of air pollutants in China: SO2, NOx and CO. Atmos Environ 34:363–374

    Article  Google Scholar 

  51. Streets DG, Bond TC, Carmichael GR, Femandes SD, Fu Q, He D, Zklimont Z (2003a) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21). doi:10.1029/2002JD003093

  52. Streets DG, Yarber KF, Woo J-H, Carmichael GR (2003b) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy 17(4):1759–1768

    Article  Google Scholar 

  53. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  54. Van Aardenne JA, Carmichael GR, Levy H, Streets D, Hordijk L (1999) Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmos Environ 33:633–646

    Article  Google Scholar 

  55. Wang Y, Yao L, Wang L, Liu Z, Ji D, Tang G, Zhang J, Sun Y, Hu B, Xin J (2014) Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci China Earth Sci 57(1):14–25

    Article  Google Scholar 

  56. William DC, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin SJ, Zhang M (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3. J Clim 19:2144–2161

    Article  Google Scholar 

  57. Wu P, Han Z (2011) A modeling study of indirect radiative and climatic effects of sulfate over East Asia. J Atmos Sci 35(3):547–559

    Google Scholar 

  58. Xin J, Wang Y, Li Z, Wang P (2007) AOD and angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res 112:1–13 D05203

    Google Scholar 

  59. Zhang M, Uno I, Yoshida Y, Xu Y, Wang Z (2004) Transport and transformation of sulfur compounds over East Asia during the TRACE-P and ACE-Asia campaigns. Atmos Environ 38:6947–6959

    Article  Google Scholar 

  60. Zhang M, Uno I, Zhang R (2006) Evaluation of the model-3 community multi-scale air quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: comparison of ozone and its related species. Atmos Environ 40:4874–4882

    Article  Google Scholar 

  61. Zhang M, Gao L, Ge C, Xu Y (2007) Simulation of nitrate aerosol concentrations over East Asia with the model ystem RAMS-CMAQ. Tellus B 59:372–380

    Article  Google Scholar 

  62. Zhang H, Wang Z, Guo P, Wang Z (2009) A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci 26(1):57–66

    Article  Google Scholar 

  63. Zhang J, Sun Y, Liu Z, Ji D, Hu B, Liu Q, Wang Y (2014) Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos Chem Phys 14:2887–2903

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2014CB953802), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (XDB05030105, XDB05030102, XDB05030103), the National Natural Science Foundation of China (41475098 and 41205123), and the Russian Scientific Fund under grant 14-47-00049.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meigen Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhang, M. & Skorokhod, A. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia. Theor Appl Climatol 130, 817–830 (2017). https://doi.org/10.1007/s00704-016-1913-8

Download citation

Keywords

  • Sichuan Basin
  • Cloud Fraction
  • Cloud Condensation Nucleus
  • Regional Atmospheric Modeling System
  • Aerosol Optical Property