Skip to main content

Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations

Abstract

We investigate the snow albedo variation in spring over the southern Tibetan Plateau induced by the deposition of light-absorbing aerosols using remote sensing data from moderate resolution imaging spectroradiometer (MODIS) aboard Terra satellite during 2001–2012. We have selected pixels with 100 % snow cover for the entire period in March and April to avoid albedo contamination by other types of land surfaces. A model simulation using GEOS-Chem shows that aerosol optical depth (AOD) is a good indicator for black carbon and dust deposition on snow over the southern Tibetan Plateau. The monthly means of satellite-retrieved land surface temperature (LST) and AOD over 100 % snow-covered pixels during the 12 years are used in multiple linear regression analysis to derive the empirical relationship between snow albedo and these variables. Along with the LST effect, AOD is shown to be an important factor contributing to snow albedo reduction. We illustrate through statistical analysis that a 1-K increase in LST and a 0.1 increase in AOD indicate decreases in snow albedo by 0.75 and 2.1 % in the southern Tibetan Plateau, corresponding to local shortwave radiative forcing of 1.5 and 4.2 W m−2, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aoki T, Hachikubo A, Hori M (2003) Effects of snow physical parameters on shortwave broadband albedos. J Geophys Res 108(D19):4616. doi:10.1029/2003JD003506

    Article  Google Scholar 

  2. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles 21:GB2018

    Article  Google Scholar 

  3. Bonasoni P, Laj P, Marinoni A, Sprenger M, Angelini F, Arduini J, Bonae U, Calzolari F, Colombo T, Decesari S, Di Biagio C, di Sarra AG, Evangelisti F, Duchi R, Facchini C, Fuzzi S, Gobbi GP, Maione M, Panday A, Roccato F, Sellegri K, Venzac H, Verza GP, Villani P, Vuillermoz E, Cristofanelli P (2010) Atmospheric Brown clouds in the Himalayas: first two years of continuous observations at the Nepal climate observatory-pyramid (5079 m). Atmos Chem Phys 10:7515–7531. doi:10.5194/acp-10-7515-2010

    Article  Google Scholar 

  4. Brown RD, Brasnett B (2010) Canadian Meteorological Centre (CMC) daily snow depth analysis data. Boulder. Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. http://dx.doi.org/10.5067/W9FOYWH0EQZ3

  5. Chylek P, Ramaswamy V, Srivastava V (1983) Albedo of soot contaminated snow. J Geophys Res 88:10837–10843

    Article  Google Scholar 

  6. Davidson CI, Jaffrezo JL, Mosher BW, Dibb JE, Borys RD, Bodhaine BA, Rasmussen RA, Boutron CF, Ducroz FM, Cachier M, Ducret J, Collin JL, Heidam NZ, Kemp K, Hillamos R (1993) Chemical constituents in the air and snow at dye 4, Greenland: II. Analysis of episodes in April 1989. Atmos Environ 27(A):2723–2738

    Article  Google Scholar 

  7. Flanner MG, Zender CS (2006) Linking snowpack microphysics and albedo evolution. J Geophys Res 111:D12208. doi:10.1029/2005JD006834

    Article  Google Scholar 

  8. Gautam R, Hsu NC, Lau WK-M, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. Geophys Res Lett 40:988–993. doi:10.1002/grl.50226

    Article  Google Scholar 

  9. Ginot P, Dumont M, Lim S, Patris N, Taupin J-D, Wagnon P, Gilbert A, Arnaud Y, Marinoni A, Bonasoni P, Laj P (2014) A 10 year record of black carbon and dust from a Mera peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. Cryosphere 8:1479–1496. doi:10.5194/tc-8-1479-2014

    Article  Google Scholar 

  10. Hadley OL, Kirchstetter TW (2012) Black carbon snow albedo reduction. Nat Clim Chang 2:437–440

    Article  Google Scholar 

  11. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedo. Proc Natl Acad Sci U S A 101:423–428. doi:10.1073/pnas.2237157100

    Article  Google Scholar 

  12. Henze DK, Hakami A, Seinfeld JH (2007) Development of the adjoint of GEOS-Chem. Atmos Chem Phys 7:2413–2433. doi:10.5194/acp-7-2413-2007

    Article  Google Scholar 

  13. He C, Li Q, Liou KN, Zhang J, Qi L, Mao Y, Gao M, Lu Z, Streets DG, Zhang Q, Sarin MM, Ram K (2014b) A global 3-D CTM evaluation of black carbon in the Tibetan Plateau. Atmos Chem Phys 14:7091–7112. doi:10.5194/acp-14-7091-2014

    Article  Google Scholar 

  14. He C, Li Q, Liou KN, Takano Y, Gu Y, Qi L, Mao Y, Leung LR (2014a) Black carbon radiative forcing over the Tibetan Plateau. Geophys Res Lett 41:7806–7813. doi:10.1002/2014GL062191

    Article  Google Scholar 

  15. Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569

    Article  Google Scholar 

  16. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–45

    Article  Google Scholar 

  17. Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. edited by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H. Cambridge University Press, Cambridge, UK, 996 pp.

  18. Jacobi H-W, Lim S, Ménégoz M, Ginot P, Laj P, Bonasoni P, Stocchi P, Marinoni A, Arnaud Y (2015) Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing. Cryosphere 9:1685–1699. doi:10.5194/tc-9-1685-2015

    Article  Google Scholar 

  19. Jacobson MZ (2004) Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res 109:D21201. doi:10.1029/2004JD004945

    Article  Google Scholar 

  20. Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phys 14:8089–8103. doi:10.5194/acp-14-8089-2014

    Article  Google Scholar 

  21. Kopacz M, Mauzerall DL, Wang J, Leibensperger EM, Henze DK, Singh K (2011) Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos Chem Phys 11:2837–2852. doi:10.5194/acp-11-2837-2011

    Article  Google Scholar 

  22. Lau WK, Kim K-M, Hsu N-YC, Holben BN (2009) Possible influences of air pollution, dust and sandstorms on the Indian monsoon. WMO Bull 58(1):22–30

    Google Scholar 

  23. Lee W-L, Liou KN (2012) Effect of absorbing aerosols on snow albedo reduction in the sierra Nevada. Atmos Environ 55:425–430

    Article  Google Scholar 

  24. Lee W-L, Liou KN, Wang C-C (2013) Impact of 3-D topography on surface radiation budget over the Tibetan Plateau. Theor Appl Climatol 113:95–103. doi:10.1007/s00704-012-0767-y

    Article  Google Scholar 

  25. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res 112:D13211. doi:10.1029/2006JD007811

    Google Scholar 

  26. Liou KN, Lee W-L, Hall A (2007) Radiative transfer in mountains: application to the Tibetan Plateau. Geophys Res Lett 34:L23809. doi:10.1029/2007GL031762

    Article  Google Scholar 

  27. Liou KN, Takano Y, Yang P (2011) Light absorption and scattering by aggregates: application to black carbon and snow grains. J Quant Spectrosc Radiat Transf 112:1581–1594

    Article  Google Scholar 

  28. Liou KN (2013) Radiative transfer and regional climate change. In “Radiative processes in the atmosphere and ocean (IRS2012)”. American Institute of Physics: pp. 35–38. doi:10.1063/1.40804701

  29. Liou KN, Takano Y, He C, Yang P, Leung RL, Gu Y, Lee W-L (2014) Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J Geophys Res 119:7616–7632. doi:10.1002/2014JD021665

    Google Scholar 

  30. Liu HY, Jacob DJ, Bey I, RM Y (2001) Constraints from Pb-210 and Be-7 on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J Geophys Res Atmos 106:12109–12128. doi:10.1029/2000jd900839

    Article  Google Scholar 

  31. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010. Atmos Chem Phys 11:9839–9864. doi:10.5194/acp-11-9839-2011

    Article  Google Scholar 

  32. Lu Z, Streets DG, Zhang Q, Wang S (2012) A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996-2010. Geophys Res Lett 39:L01809. doi:10.1029/2011GL049903

    Article  Google Scholar 

  33. Marinoni A, Cristofanelli P, Laj P, Duchi R, Putero D, Calzolari F, Landi TC, Vuillermoz E, Maione M, Bonasoni P (2013) High black carbon and ozone concentrations during pollution transport in the Himalayas: five years of continuous observations at NCO-P global GAW station. J Environ Sci 25:1618–1625. doi:10.1016/S1001-0742(12)60242-3

    Article  Google Scholar 

  34. Ménégoz M, Krinner G, Balkanski Y, Boucher O, Cozic A, Lim S, Ginot P, Laj P, Gallée H, Wagnon P, Marinoni A, Jacobi HW (2014) Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos Chem Phys 14:4237–4249. doi:10.5194/acp-14-4237-2014

    Article  Google Scholar 

  35. Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571. doi:10.5194/acp-10-4559-2010

    Article  Google Scholar 

  36. Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8:1343–1352

    Article  Google Scholar 

  37. Pu Z, Xu L, Salomonson VV (2007) MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys Res Lett 34:L0706

    Google Scholar 

  38. Ramanathan V, Li F, Ramana M, Praveen PS, Kim D, Corrigan CE, Nguyen H, Stone EA, Schauer JJ, Carmichael GR, Adhikary B, Yoon SC (2007) Atmospheric brown clouds: hemispherical and regional variations in long range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21

    Article  Google Scholar 

  39. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227. doi:10.1038/ngeo156

    Article  Google Scholar 

  40. Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res Biogeosci 117:G04012. doi:10.1029/2012jg002128

    Article  Google Scholar 

  41. Riggs GA, Hall DK, Salomonson VV (2006) MODIS snow products user guide. http://modis-snow-ice.gsfc.nasa.gov/sugkc2.html

  42. Ruiz-Arias JA, Dudhia J, Gueymard CA, Pozo-Vázquez D (2013) Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmos Chem Phys 13:675–692. doi:10.5194/acp-13-675-2013

    Article  Google Scholar 

  43. Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27(12):2502–2509. doi:10.1364/AO.27.002502

    Article  Google Scholar 

  44. Stroeve JC, Box J, Haran T (2006) Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens Environ 105(2):155–171. doi:10.1016/j.rse.2006.06.009

    Article  Google Scholar 

  45. Ten Hoeve JE, Jacobson MZ, Remer LA (2012) Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J Geophys Res 117:D08203. doi:10.1029/2011JD016856

    Google Scholar 

  46. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos Chem Phys 10:11707–11735. doi:10.5194/acp-10-11707-2010

    Article  Google Scholar 

  47. Wan Z (2012) MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG, 2000–2009. EDC LPDAAC, Sioux Falls, South Dakota, USA. Digital media.

  48. Wang Q, Jacob DJ, Fisher JA, Mao J, Leibensperger EM, Carouge CC, Le Sager P, Kondo Y, Jimenez JL, Cubison MJ, Doherty SJ (2011) Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmos Chem Phys 11:12453–12473. doi:10.5194/acp-11-12453-2011

    Article  Google Scholar 

  49. Warren S, Wiscombe W (1980) A model for the spectral albedo of snow II: snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745

    Article  Google Scholar 

  50. Warren SG (2013) Can black carbon in snow be detected by remote sensing? J Geophys Res 118:779–786. doi:10.1029/2012JD018476

    Google Scholar 

  51. Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304. doi:10.1016/0004-6981(89)90153-4

    Article  Google Scholar 

  52. Yasunari TJ, Bonasoni P, Laj P, Fujita K, Vuillermoz E, Marinoni A, Cristofanelli P, Duchi R, Tartari G, Lau K-M (2010) Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory—pyramid data and snow albedo changes over Himalayan glaciers. Atmos Chem Phys 10:6603–6615

    Article  Google Scholar 

  53. Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D, Duan L, Lei Y, Wang LT, Yao ZL (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153

    Article  Google Scholar 

  54. Zhang L, Li QB, Gu Y, Liou KN, Meland B (2013) Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport-radiative-transfer model. Atmos Chem Phys 13:7097–7114. doi:10.5194/acp-13-7097-2013

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Ministry of Science and Technology of Taiwan under contract MOST 103-2111-M-001-007 and by the Department of Energy of the United States under Grant DESC0006742 and the National Science Foundation under Grant AGS-0946315. We thank NASA’s Earth Observing System Data and Information System (EOSDIS) for providing MODIS/Terra retrievals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Liang Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, WL., Liou, K.N., He, C. et al. Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations. Theor Appl Climatol 129, 1373–1382 (2017). https://doi.org/10.1007/s00704-016-1860-4

Download citation

Keywords

  • Tibetan Plateau
  • Black Carbon
  • Land Surface Temperature
  • Aerosol Optical Depth
  • Global Precipitation Climatology Project