The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013)

Abstract

The majority of natural hazards that affect Canadian territory are the result of extreme climate and weather conditions. Among these weather hazards, some can be calculated from the application of thresholds for minimum and maximum temperatures at a daily or monthly timescale. These thermal indices allowed the prediction of extreme conditions that may have an impact on the human population by affecting, for example, health, agriculture, and water resources. In this article, we discuss the methods used (RHtestsV4, SPLIDHOM, ClimPACT) then describe the steps followed to calculate the indices, including how we dealt with the problem of missing data and the necessity to identify a common methodology to analyze the time series. We also present possible solutions for ensuring the quality of meteorological data. We then present an overview of the results, namely the main trends and variability of extreme temperature for seven stations located in the Gaspé Peninsula from 1974 to 2013. Our results indicate some break points in time series and positive trends for most indices related to the rise of the temperatures but indicate a negative trend for the indices related to low temperatures for most stations during the study period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acquaotta F, Fratianni S, Venema V (2016) Assessment of parallel precipitation measurements networks in Piedmont, Italy. Int J Climatol. doi:10.1002/joc.4606

    Google Scholar 

  2. Acquaotta F, Fratianni S, Cassardo C, Cremonini R (2009) On the continuity and climatic variability of the meteorological stations in Torino, Asti, Vercelli and Oropa. Meteorog Atmos Phys 103(1–4):279–287

    Article  Google Scholar 

  3. Acquaotta F, Fratianni S (2014) The importance of the quality and reability of the historical time series for the study of climate change. Rev Bras Climatol 14:20–38

    Google Scholar 

  4. Acquaotta F, Fratianni S, Garzena D (2015) Temperature change in the North-Western Italian Alps from 1961 to 2010. Theor Appl Climatol 122:619–634. doi:10.1007/s00704-014-1316-7

    Article  Google Scholar 

  5. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidance on metadata and homogenization. WMO TD 1186:53

    Google Scholar 

  6. Alexander L, Yang H, Perkins S (2013) ClimPACT—Indices and Software. User Manual. Available online: http://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/meetings/documen.ts/ETCRSCI_software_documentation_v2a.doc. Accessed 05 June 2015

  7. Alexander LV, Zhang X, Peterson TC, et al. (2006) Global observed changes in daily climate extremes of temperature and precipitation (1984–2012). J Geophys Res-Atmos 111:D5

    Google Scholar 

  8. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz HF, Grosjean M, Graumlich L (eds) Climate variability and change in high elevation regions: past, present & future. Springer, Netherlands, pp. 5–31

    Google Scholar 

  9. Brunet M, Jones PD, Sigró J, et al. (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi:10.1029/2006JD008249.

    Article  Google Scholar 

  10. Brunet M, Asin J, Sigro J, Banon M, Garcia F, Aguilar E, Esteban Palenzuela J, Peterson TC, Jones P (2011) The minimization of the screen bias from ancient western Mediterranean air temperature records: an exploratory statistical analysis. Int J Climatol 31:1879–1895

    Article  Google Scholar 

  11. Buishand TA, De Martino G, Spreeuw JN, Brandsma T (2013) Homogeneity of precipitation series in the Netherlands. Int J Climatol 33:815–833

    Article  Google Scholar 

  12. Conover WJ, Johnson ME, Johnson MM (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23(4):351–361

    Article  Google Scholar 

  13. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496

    Google Scholar 

  14. Domonkos P, Venema V, Auer I, Mestre O, Brunetti M (2012) The historical pathway towards more accurate homogenisation. Adv Sci Technol 8(1):45–52

    Google Scholar 

  15. Dore MH (2003) Forecasting the conditional probabilities of natural disasters in Canada as a guide for disaster preparedness. Nat Hazards 28(2–3):249–269

    Article  Google Scholar 

  16. Drogue G, Mestre O, Hoffmann L, Iffly JF, Pfister L (2005) Recent warming in a small region with semi-oceanic climate, 1949–1998: what is the ground truth? Theor Appl Climatol 81(1–2):1–10

    Article  Google Scholar 

  17. Ducré-Robitaille JF, Vincent LA, Boulet G (2003) Comparison of techniques for detection of discontinuities in temperature series. Int J Climatol 23(9):1087–1101

    Article  Google Scholar 

  18. Environment Canada (2016a) Canadian Normals Climatic. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 30 June 2015

  19. Environment Canada (2016b) Homogenized Surface Air Temperature Data Access Station Information. Available online: http://www.ec.gc.ca/dccha-ahccd/default.asp?lang=En&n=1EEECD01-1. Accessed 6 April 2016

  20. Fortin G (2010) Variabilité et fréquence des cycles de gel-dégel dans la région de Québec, 1977–2006. Can Geogr-Geogr Can 54(2):196–208

    Article  Google Scholar 

  21. Fortin G, Hétu B (2012) Changements de la proportion de neige reçue durant la saison hivernale en Gaspésie depuis 1970. Actes du colloque de l’Association Internationale de Climatologie, Grenoble, France, September 5–8 2012, 297–302

  22. Fortin G, Hétu B (2014) Estimating winter trends in climatic variables in the Chic-Chocs Mountains, Canada (1970–2009). Int J Climatol 34(10): 3078–3088

  23. Fortin G, Hétu B, Gauthier F, Germain D (2015) Extrêmes météorologiques et leurs impacts géomorphologiques: le cas de la Gaspésie. Proceedings of the Association Internationale de Climatologie, Liège, Belgique, July 1–4 2015, 469–474

  24. Fratianni S, Terzago S, Acquaotta F, Faletto M, Garzena D, Prola M C, Barbero S (2015)—How snow and its physical properties change in a changing climate alpine context? Engineering Geology for society and territory, Springer, 1(11): 57–60.

  25. Freitas L, Pereira MG, Caramelo L, Mendes M, Nunes LF (2013) Homogeneity of monthly air temperature in Portugal with HOMER and MASH. Idojaras 117(1):69–90

    Google Scholar 

  26. Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the Rocky Mountains. J Clim 12(1):230–243

    Article  Google Scholar 

  27. Giaccone E, Colombo N, Acquaotta F, Paro L, Fratianni S (2015) Climate variations in a high altitude Alpine basin and their effects on a glacial environment (Italian Western Alps). Atmosfera 28(2):117–128

    Article  Google Scholar 

  28. Guijarro, JA (2011) User’s guide to CLIMATOL. An R contributed package for homogenization of climatological series, Report, State Meteorological Agency, Balearic Islands Office, Spain

  29. Gray JT, Brown RJ (1979) Permafrost presence and distribution in the Chic-Chocs Mountains, Gaspésie, Québec. Géog Phys Quatern 33(3–4):299–316

    Google Scholar 

  30. Greenough G, McGeehin M, Bernard SM, Trtanj J, Riad J, Engelberg D (2001) The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. Environ Health Perspect 109(Suppl 2):191

    Article  Google Scholar 

  31. Hannart A, Mestre O, Naveau P (2014) An automatized homogenization procedure via pairwise comparisons with application to Argentinean temperature series. Int J Climatol 34(13):3528–3545

    Article  Google Scholar 

  32. Henderson KG, Muller RA (1997) Extreme temperature days in the south-central United States. Clim Res 8(2):151–162

    Article  Google Scholar 

  33. Hétu B, Gray JT (2000) Les étapes de la déglaciation dans le Nord de la Gaspésie (Québec): les marges glaciaires des Dryas ancien et récent. Géog Phys Quatern 54(1):5–40

    Google Scholar 

  34. IPCC 2012 Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

  35. IPCC 2013 Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

  36. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Chang 42:3–7

    Article  Google Scholar 

  37. Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  38. Kunkel KE, Pielke Jr RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80(6):1077–1098

    Article  Google Scholar 

  39. Laborde J-P, Mouhous M (1998) Hydrolab Software V.98.2. Équipe Gestion et valorisation de l’environnement de l’UMR 5651, ̒ Espace ̓ du CNRS.

  40. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  41. Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49(2):163–177

    Article  Google Scholar 

  42. Menne MJ, Williams Jr CN (2009) Homogenization of temperature series via pairwise comparisons. J Clim 22(7):1700–1717

    Article  Google Scholar 

  43. Menne MJ, Williams CN Jr, Palecki MA (2010) On the reliability of the US surface temperature record. J Geophys Res Atmos 115, D11108. doi:10.1029/2009JD013094

  44. Mestre O, Gruber C, Prieur C, Caussinus H, Jourdain S (2011) SPLIDHOM: a method for homogenization of daily temperature observations. J Appl Meteorol Climatol 50(11):2343–2358

    Article  Google Scholar 

  45. Mestre O, Domonkos P, Picard F, et al. (2013) HOMER: a homogenization software–methods and applications. Idojaras 117(1):47–67

    Google Scholar 

  46. Miller, RG Jr (1981) Nonparametric Techniques. In: Simultaneous Statistical Inference (p 129–188). Springer: New York

  47. Mouhamed L, Traore SB, Alhassane A, Sarr B (2013) Evolution of some observed climate extremes in the West African Sahel. Weather Clim Extremes 1:19–25

    Article  Google Scholar 

  48. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450

    Article  Google Scholar 

  49. Peterson TC (2003) Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J Clim 16(18):2941–2959

    Article  Google Scholar 

  50. Peterson TC et al. (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517

    Article  Google Scholar 

  51. Peterson TC, Manton MJ (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Am Meteorol Soc 89(9):1266–1271

    Article  Google Scholar 

  52. Retchless D, Frey N, Wang C, Hung LS, Yarnal B (2014) Climate extremes in the United States: recent research by physical geographers. Phys Geogr 35(1):3–21

    Article  Google Scholar 

  53. Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Chang Hum Health 2(2):90–104

    Article  Google Scholar 

  54. Seidel TM, Weihrauch DM, Kimball KD, Pszenny AA, Soboleski R, Crete E, Murray G (2009) Evidence of climate change declines with elevation based on temperature and snow records from 1930s to 2006 on Mount Washington, New Hampshire, USA. Arct Antarct Alp Res 41(3):362–372

    Article  Google Scholar 

  55. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  56. Smith CL, Lawson N (2012) Identifying extreme event climate thresholds for greater Manchester, UK: examining the past to prepare for the future. Meteorol Appl 19(1):26–35

    Article  Google Scholar 

  57. Spinoni J, Lakatos M, Szentimrey T, Bihari Z, Szalai S, Vogt J, Antofie T (2015) Heat and cold waves trends in the Carpathian region from 1961 to 2010. Int J Climatol. doi:10.1002/joc.4279

    Google Scholar 

  58. Terzago S, Fratianni S, Cremonini R (2013) Winter precipitation in Western Italian Alps (1926–2010). Meteorog Atmos Phys 119(3–4):125–136

    Article  Google Scholar 

  59. Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115:283–290

    Article  Google Scholar 

  60. Trewin B (2013) A daily homogenized temperature data set for Australia. Int J Climatol 33(6):1510–1529. doi:10.1002/joc.3530.

    Article  Google Scholar 

  61. Venema VK, Mestre O, Aguilar E, et al. (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8(1):89–115

    Article  Google Scholar 

  62. Vincent LA, Zhang X, Bonsal BR, Hogg WD (2002) Homogenization of daily temperatures over Canada. J Clim 15(11):1322–1334

    Article  Google Scholar 

  63. Vincent LA, Mekis E (2004) Variations and trends in climate indices for Canada. In 14th Conference on Applied Climatology American Meteorology Society, Seattle

  64. Vincent LA, Peterson TC, Barros VR, et al. (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18(23):5011–5023

    Article  Google Scholar 

  65. Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean 44(2):177–193

    Article  Google Scholar 

  66. Vincent LA, Wang XL, Milewska EJ, Wan H, Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res-Atmos 117:D18

    Google Scholar 

  67. Wang XL (2008a) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25(3):368–384

    Article  Google Scholar 

  68. Wang XL (2008b) Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47(9):2423–2444

    Article  Google Scholar 

  69. Wang XL, Wen QH, Wu Y (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46(6):916–931

    Article  Google Scholar 

  70. Wang XL, Chen H, Wu Y, Feng Y, Pu Q (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49(12):2416–2436

    Article  Google Scholar 

  71. Wang XL, Feng Y (2013) RHtestsV4: User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. Downsview, Ontario, Canada

  72. Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692

    Article  Google Scholar 

  73. Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall

  74. Miller, R. G. (1981) Simultaneous Statistical Inference. Springer

  75. Zandonadi L, Acquaotta F, Fratianni S, Zavattini JA (2016) Changes in precipitation extremes in Brazil (Paraná River Basin). Theor Appl Climatol. doi:10.1007/s00704-015-1391-4

    Google Scholar 

  76. Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 38(3):395–429

    Article  Google Scholar 

  77. Zhang X, Yang F (2004) RClimDex (1.0) User Guide. Climate Research Branch, Environment Canada, Downsview, Ontario, Canada

Download references

Acknowledgments

The authors would like to thank Jeremy Hayhoe for proof-reading assistance and Gabriela Goudard for the mapping. The quality control and homogenizations of daily data of maximum and minimum temperatures was done in the context of the Italian MIUR Project (PRIN 2010-11): “Response of morphoclimatic system dynamics to global changes and related geomorphological hazards” (national coordinator C. Baroni) and the Italian research project NextSnow (national coordinator V. Levizzani).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guillaume Fortin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fortin, G., Acquaotta, F. & Fratianni, S. The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013). Theor Appl Climatol 130, 163–172 (2017). https://doi.org/10.1007/s00704-016-1859-x

Download citation

Keywords

  • Climate Index
  • Environment Canada
  • Homogenization Method
  • Reference Series
  • Regional Index