Skip to main content

Advertisement

Log in

The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013)

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The majority of natural hazards that affect Canadian territory are the result of extreme climate and weather conditions. Among these weather hazards, some can be calculated from the application of thresholds for minimum and maximum temperatures at a daily or monthly timescale. These thermal indices allowed the prediction of extreme conditions that may have an impact on the human population by affecting, for example, health, agriculture, and water resources. In this article, we discuss the methods used (RHtestsV4, SPLIDHOM, ClimPACT) then describe the steps followed to calculate the indices, including how we dealt with the problem of missing data and the necessity to identify a common methodology to analyze the time series. We also present possible solutions for ensuring the quality of meteorological data. We then present an overview of the results, namely the main trends and variability of extreme temperature for seven stations located in the Gaspé Peninsula from 1974 to 2013. Our results indicate some break points in time series and positive trends for most indices related to the rise of the temperatures but indicate a negative trend for the indices related to low temperatures for most stations during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acquaotta F, Fratianni S, Venema V (2016) Assessment of parallel precipitation measurements networks in Piedmont, Italy. Int J Climatol. doi:10.1002/joc.4606

    Google Scholar 

  • Acquaotta F, Fratianni S, Cassardo C, Cremonini R (2009) On the continuity and climatic variability of the meteorological stations in Torino, Asti, Vercelli and Oropa. Meteorog Atmos Phys 103(1–4):279–287

    Article  Google Scholar 

  • Acquaotta F, Fratianni S (2014) The importance of the quality and reability of the historical time series for the study of climate change. Rev Bras Climatol 14:20–38

    Google Scholar 

  • Acquaotta F, Fratianni S, Garzena D (2015) Temperature change in the North-Western Italian Alps from 1961 to 2010. Theor Appl Climatol 122:619–634. doi:10.1007/s00704-014-1316-7

    Article  Google Scholar 

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidance on metadata and homogenization. WMO TD 1186:53

    Google Scholar 

  • Alexander L, Yang H, Perkins S (2013) ClimPACT—Indices and Software. User Manual. Available online: http://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/meetings/documen.ts/ETCRSCI_software_documentation_v2a.doc. Accessed 05 June 2015

  • Alexander LV, Zhang X, Peterson TC, et al. (2006) Global observed changes in daily climate extremes of temperature and precipitation (1984–2012). J Geophys Res-Atmos 111:D5

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz HF, Grosjean M, Graumlich L (eds) Climate variability and change in high elevation regions: past, present & future. Springer, Netherlands, pp. 5–31

    Chapter  Google Scholar 

  • Brunet M, Jones PD, Sigró J, et al. (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi:10.1029/2006JD008249.

    Article  Google Scholar 

  • Brunet M, Asin J, Sigro J, Banon M, Garcia F, Aguilar E, Esteban Palenzuela J, Peterson TC, Jones P (2011) The minimization of the screen bias from ancient western Mediterranean air temperature records: an exploratory statistical analysis. Int J Climatol 31:1879–1895

    Article  Google Scholar 

  • Buishand TA, De Martino G, Spreeuw JN, Brandsma T (2013) Homogeneity of precipitation series in the Netherlands. Int J Climatol 33:815–833

    Article  Google Scholar 

  • Conover WJ, Johnson ME, Johnson MM (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23(4):351–361

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496

    Google Scholar 

  • Domonkos P, Venema V, Auer I, Mestre O, Brunetti M (2012) The historical pathway towards more accurate homogenisation. Adv Sci Technol 8(1):45–52

    Google Scholar 

  • Dore MH (2003) Forecasting the conditional probabilities of natural disasters in Canada as a guide for disaster preparedness. Nat Hazards 28(2–3):249–269

    Article  Google Scholar 

  • Drogue G, Mestre O, Hoffmann L, Iffly JF, Pfister L (2005) Recent warming in a small region with semi-oceanic climate, 1949–1998: what is the ground truth? Theor Appl Climatol 81(1–2):1–10

    Article  Google Scholar 

  • Ducré-Robitaille JF, Vincent LA, Boulet G (2003) Comparison of techniques for detection of discontinuities in temperature series. Int J Climatol 23(9):1087–1101

    Article  Google Scholar 

  • Environment Canada (2016a) Canadian Normals Climatic. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 30 June 2015

  • Environment Canada (2016b) Homogenized Surface Air Temperature Data Access Station Information. Available online: http://www.ec.gc.ca/dccha-ahccd/default.asp?lang=En&n=1EEECD01-1. Accessed 6 April 2016

  • Fortin G (2010) Variabilité et fréquence des cycles de gel-dégel dans la région de Québec, 1977–2006. Can Geogr-Geogr Can 54(2):196–208

    Article  Google Scholar 

  • Fortin G, Hétu B (2012) Changements de la proportion de neige reçue durant la saison hivernale en Gaspésie depuis 1970. Actes du colloque de l’Association Internationale de Climatologie, Grenoble, France, September 5–8 2012, 297–302

  • Fortin G, Hétu B (2014) Estimating winter trends in climatic variables in the Chic-Chocs Mountains, Canada (1970–2009). Int J Climatol 34(10): 3078–3088

  • Fortin G, Hétu B, Gauthier F, Germain D (2015) Extrêmes météorologiques et leurs impacts géomorphologiques: le cas de la Gaspésie. Proceedings of the Association Internationale de Climatologie, Liège, Belgique, July 1–4 2015, 469–474

  • Fratianni S, Terzago S, Acquaotta F, Faletto M, Garzena D, Prola M C, Barbero S (2015)—How snow and its physical properties change in a changing climate alpine context? Engineering Geology for society and territory, Springer, 1(11): 57–60.

  • Freitas L, Pereira MG, Caramelo L, Mendes M, Nunes LF (2013) Homogeneity of monthly air temperature in Portugal with HOMER and MASH. Idojaras 117(1):69–90

    Google Scholar 

  • Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the Rocky Mountains. J Clim 12(1):230–243

    Article  Google Scholar 

  • Giaccone E, Colombo N, Acquaotta F, Paro L, Fratianni S (2015) Climate variations in a high altitude Alpine basin and their effects on a glacial environment (Italian Western Alps). Atmosfera 28(2):117–128

    Article  Google Scholar 

  • Guijarro, JA (2011) User’s guide to CLIMATOL. An R contributed package for homogenization of climatological series, Report, State Meteorological Agency, Balearic Islands Office, Spain

  • Gray JT, Brown RJ (1979) Permafrost presence and distribution in the Chic-Chocs Mountains, Gaspésie, Québec. Géog Phys Quatern 33(3–4):299–316

    Google Scholar 

  • Greenough G, McGeehin M, Bernard SM, Trtanj J, Riad J, Engelberg D (2001) The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. Environ Health Perspect 109(Suppl 2):191

    Article  Google Scholar 

  • Hannart A, Mestre O, Naveau P (2014) An automatized homogenization procedure via pairwise comparisons with application to Argentinean temperature series. Int J Climatol 34(13):3528–3545

    Article  Google Scholar 

  • Henderson KG, Muller RA (1997) Extreme temperature days in the south-central United States. Clim Res 8(2):151–162

    Article  Google Scholar 

  • Hétu B, Gray JT (2000) Les étapes de la déglaciation dans le Nord de la Gaspésie (Québec): les marges glaciaires des Dryas ancien et récent. Géog Phys Quatern 54(1):5–40

    Google Scholar 

  • IPCC 2012 Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

  • IPCC 2013 Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

  • Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Chang 42:3–7

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kunkel KE, Pielke Jr RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80(6):1077–1098

    Article  Google Scholar 

  • Laborde J-P, Mouhous M (1998) Hydrolab Software V.98.2. Équipe Gestion et valorisation de l’environnement de l’UMR 5651, ̒ Espace ̓ du CNRS.

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49(2):163–177

    Article  Google Scholar 

  • Menne MJ, Williams Jr CN (2009) Homogenization of temperature series via pairwise comparisons. J Clim 22(7):1700–1717

    Article  Google Scholar 

  • Menne MJ, Williams CN Jr, Palecki MA (2010) On the reliability of the US surface temperature record. J Geophys Res Atmos 115, D11108. doi:10.1029/2009JD013094

  • Mestre O, Gruber C, Prieur C, Caussinus H, Jourdain S (2011) SPLIDHOM: a method for homogenization of daily temperature observations. J Appl Meteorol Climatol 50(11):2343–2358

    Article  Google Scholar 

  • Mestre O, Domonkos P, Picard F, et al. (2013) HOMER: a homogenization software–methods and applications. Idojaras 117(1):47–67

    Google Scholar 

  • Miller, RG Jr (1981) Nonparametric Techniques. In: Simultaneous Statistical Inference (p 129–188). Springer: New York

  • Mouhamed L, Traore SB, Alhassane A, Sarr B (2013) Evolution of some observed climate extremes in the West African Sahel. Weather Clim Extremes 1:19–25

    Article  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450

    Article  Google Scholar 

  • Peterson TC (2003) Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J Clim 16(18):2941–2959

    Article  Google Scholar 

  • Peterson TC et al. (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517

    Article  Google Scholar 

  • Peterson TC, Manton MJ (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Am Meteorol Soc 89(9):1266–1271

    Article  Google Scholar 

  • Retchless D, Frey N, Wang C, Hung LS, Yarnal B (2014) Climate extremes in the United States: recent research by physical geographers. Phys Geogr 35(1):3–21

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Chang Hum Health 2(2):90–104

    Article  Google Scholar 

  • Seidel TM, Weihrauch DM, Kimball KD, Pszenny AA, Soboleski R, Crete E, Murray G (2009) Evidence of climate change declines with elevation based on temperature and snow records from 1930s to 2006 on Mount Washington, New Hampshire, USA. Arct Antarct Alp Res 41(3):362–372

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Smith CL, Lawson N (2012) Identifying extreme event climate thresholds for greater Manchester, UK: examining the past to prepare for the future. Meteorol Appl 19(1):26–35

    Article  Google Scholar 

  • Spinoni J, Lakatos M, Szentimrey T, Bihari Z, Szalai S, Vogt J, Antofie T (2015) Heat and cold waves trends in the Carpathian region from 1961 to 2010. Int J Climatol. doi:10.1002/joc.4279

    Google Scholar 

  • Terzago S, Fratianni S, Cremonini R (2013) Winter precipitation in Western Italian Alps (1926–2010). Meteorog Atmos Phys 119(3–4):125–136

    Article  Google Scholar 

  • Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115:283–290

    Article  Google Scholar 

  • Trewin B (2013) A daily homogenized temperature data set for Australia. Int J Climatol 33(6):1510–1529. doi:10.1002/joc.3530.

    Article  Google Scholar 

  • Venema VK, Mestre O, Aguilar E, et al. (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8(1):89–115

    Article  Google Scholar 

  • Vincent LA, Zhang X, Bonsal BR, Hogg WD (2002) Homogenization of daily temperatures over Canada. J Clim 15(11):1322–1334

    Article  Google Scholar 

  • Vincent LA, Mekis E (2004) Variations and trends in climate indices for Canada. In 14th Conference on Applied Climatology American Meteorology Society, Seattle

  • Vincent LA, Peterson TC, Barros VR, et al. (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18(23):5011–5023

    Article  Google Scholar 

  • Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean 44(2):177–193

    Article  Google Scholar 

  • Vincent LA, Wang XL, Milewska EJ, Wan H, Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res-Atmos 117:D18

    Google Scholar 

  • Wang XL (2008a) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25(3):368–384

    Article  Google Scholar 

  • Wang XL (2008b) Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47(9):2423–2444

    Article  Google Scholar 

  • Wang XL, Wen QH, Wu Y (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46(6):916–931

    Article  Google Scholar 

  • Wang XL, Chen H, Wu Y, Feng Y, Pu Q (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49(12):2416–2436

    Article  Google Scholar 

  • Wang XL, Feng Y (2013) RHtestsV4: User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. Downsview, Ontario, Canada

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692

    Article  Google Scholar 

  • Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall

  • Miller, R. G. (1981) Simultaneous Statistical Inference. Springer

  • Zandonadi L, Acquaotta F, Fratianni S, Zavattini JA (2016) Changes in precipitation extremes in Brazil (Paraná River Basin). Theor Appl Climatol. doi:10.1007/s00704-015-1391-4

    Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 38(3):395–429

    Article  Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) User Guide. Climate Research Branch, Environment Canada, Downsview, Ontario, Canada

Download references

Acknowledgments

The authors would like to thank Jeremy Hayhoe for proof-reading assistance and Gabriela Goudard for the mapping. The quality control and homogenizations of daily data of maximum and minimum temperatures was done in the context of the Italian MIUR Project (PRIN 2010-11): “Response of morphoclimatic system dynamics to global changes and related geomorphological hazards” (national coordinator C. Baroni) and the Italian research project NextSnow (national coordinator V. Levizzani).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Fortin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin, G., Acquaotta, F. & Fratianni, S. The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013). Theor Appl Climatol 130, 163–172 (2017). https://doi.org/10.1007/s00704-016-1859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1859-x

Keywords

Navigation