Skip to main content
Log in

Diurnal cycle of convection during the CAIPEEX 2011 experiment

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The diurnal cycle of convective storm events is investigated in the study with the help of C-band radar reflectivity data during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX 2011) in combination with other ground-based observations. A threshold reflectivity of 25 dBZ is used to identify the initiation of storms. Observations from collocated sensors such as a microwave radiometer profiler, water vapor measurement from eddy covariance system, and wind lidar measurements are used to investigate the characteristic features and diurnal cycle of convectively initiated storms from 21st September to 5th November 2011. The maximum reflectivity follows a normal distribution with a mean value of 40 dBZ. The cloud depth over the domain varied between 5 and 15 km corresponding to a range of reflectivity of 30–50 dBZ values. In the diurnal cycle, double maximum in the precipitation flux is noted—one during the afternoon hours associated with the diurnal heating and the other in the nocturnal periods. The nocturnal precipitation maximum is attributed to initiation of several single-cell storms (of congestus type) with a duration that is larger than the storms initiated during the daytime. The convective available potential energy (CAPE) showed a diurnal variation and was directly linked with the surface level water vapor content. The high CAPE favored single storms with a reflectivity >40 dBZ and higher echo top heights. In the evening or late night hours, a nocturnal low-level jet present over the location together with the reduced stability above the cloud base favored enhancement of low-level moisture, CAPE, and further initiation of new convection. The study illustrated how collocated observations could be used to study storm initiation and associated thermodynamic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anagnostou E (2004) A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol Appl 11:291–300

    Article  Google Scholar 

  • Basu BK (2007) Diurnal variation in precipitation over India during the summer monsoon season: observed and model predicted. Mon Weather Rev 135:2155–2167

    Article  Google Scholar 

  • Battan LJ (1953) Duration of convective radar cloud units. Bull Am Meteorol Soc 34:227–228

    Google Scholar 

  • Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Köhler M, Miller M, Re delsperger JL (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130:3119–3137

    Article  Google Scholar 

  • Bhat GS, Kumar S (2015) Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J Geophys Res Atmos 120. doi:10.1002/2014JD022552

  • Bhate J, Unnikrishnan CK, Rajeevan M (2012) Regional climate model simulations of the 2009 Indian summer monsoon. Indian J Radio Space Phys 41:488–500

    Google Scholar 

  • Bhatt BC, Koh TY, Yamamoto M, Nakamura K (2010) The diurnal cycle of convective activity over South Asia as diagnosed from METEOSAT-5 and TRMM data. Terr Atmos Ocean Sci 21:841–854. doi:10.3319/TAO.2010.02.04.01(A)

    Article  Google Scholar 

  • Bock O, Guichard F, Janicot S, Lafore JP, Bouin M-N, Sultan B (2007) Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses. Geophys Res Lett 34, L09705. doi:10.1029/2006GL028039

    Article  Google Scholar 

  • Bodine D, Heinselman PL, Cheong BL, Palmer RD, Michaud D (2010) A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals. J Appl Meteorol Clim 49:1766–1778

    Article  Google Scholar 

  • Boodoo S, Hudak D, Donaldson N, Paterson R, Sills D (2003) Summer severe weather occurrence in southern Ontario—a climatological perspective. Preprints, 31st international conference on radar meteorology, Seattle, WA, Am. Meteorol. Soc. 621–624

  • Browning KA et al (2007) The convective storm initiation project. Bull Am Meteorol Soc 88:1939–1955. doi:10.1175/BAMS-88-12-1939

    Article  Google Scholar 

  • Byon J-Y, Lim G-H (2005) Diurnal variation of tropical convection during TOGA COARE IOP. Adv Atmos Sci 22(5):685–702. doi:10.1007/BF02918712

    Article  Google Scholar 

  • Caine S, Lane T, May P, Jakob C, Siems ST, Manton MJ, Pinto J (2013) Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon Weather Rev 141:557–581. doi:10.1175/MWR-D-11-00274.1

    Article  Google Scholar 

  • Chen SS, Houze RA Jr (1997) Diurnal variation and life cycle of deep convective systems over the tropical Pacific warm pool. Q J R Meteorol Soc 123:357–388

    Article  Google Scholar 

  • Chen M, Wang Y, Gao F, Xiao X (2012) Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J Geophys Res 117, D20115. doi:10.1029/2012JD018158

    Google Scholar 

  • Dai A (2001) Global precipitation and thunderstorm frequencies. Part II: diurnal variations. J Clim 14(6):1112–1128

    Article  Google Scholar 

  • Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res 104:6377–6402

    Article  Google Scholar 

  • Deshpande NR, Kulkarni A, Krishna Kumar K (2012) Characteristic features of hourly rainfall in India. Int J Climatol 32:1730–1744. doi:10.1002/joc.2375

    Article  Google Scholar 

  • Dixon M, Wiener G (1993) TITAN. Thunderstorm identification, tracking, analysis, and nowcasting—a radar-based methodology. J Atmos Oceanic Technol 10:785–797

    Article  Google Scholar 

  • Donner LJ, Phillips VT (2003) Boundary layer control on convective available potential energy: implications for cumulus parameterization. J Geophys Re 108:4701. doi:10.1029/2003JD003773

    Article  Google Scholar 

  • Fabry F (2006) The spatial variability of moisture in the boundary layer and its effect on convection initiation. Project-long characterization. Mon Weather Rev 134:79–91. doi:10.1175/MWR3055.1

    Article  Google Scholar 

  • Folkins I, Mitovski T, Pierce JR (2014) A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J Geophys Res Atmos 119:2113–2130. doi:10.1002/2013JD020149

    Article  Google Scholar 

  • Foote GB, Mohr CG (1979) Results of a randomized hail suppression experiment in northeast Colorado: part VI. Post hoc stratification by storm type and intensity. J Appl Meteor 18:1589–1600

    Article  Google Scholar 

  • Gambheer AV, Bhat GS (2001) Diurnal variation of deep cloud systems over the Indian region using INSAT-1B pixel data. Meteor Atmos Phys 78(3–4):215–225

    Article  Google Scholar 

  • Goudenhoofdt E, Delobbe L (2013) Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. J Appl Meteor Climatol 52:918–934. doi:10.1175/JAMC-D-12-079.1

    Article  Google Scholar 

  • Goudenhoofdt E, Reyniers M, Delobbe L (2010) Long term analysis of convective storm tracks based on C-band radar reflectivity measurements. ERAD 2010—the sixth European conference on radar in meteorology and hydrology

  • Grabowski WW et al (2006) Daytime convective development overland: a model intercomparison based on LBA observations. Q J R Meteorol Soc 132:317–344. doi:10.1256/qj.04.147

    Article  Google Scholar 

  • Hendon HH, Woodberry K (1993) The diurnal cycle of tropical convection. J Geophys Res 98(D9):16623–16637. doi:10.1029/93JD00525

    Article  Google Scholar 

  • Houze RA, Cheng C-P (1977) Radar characteristics of tropical convection observed during GATE: mean properties and trends over the summer season. Mon Weather Rev 105:964–980

    Article  Google Scholar 

  • Kang S-L, Bryan GH (2011) A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon Weather Rev 139:2901–2917. doi:10.1175/MWR-D-10-05037.1

    Article  Google Scholar 

  • Kirshbaum DJ, Durran DR (2004) Factors governing cellular convection in orographic precipitation. J Atmos Sci 61(6):682–698

    Article  Google Scholar 

  • Konwar M, Maheskumar RS, Kulkarni JR, Freud E, Goswami BN, Rosenfeld D (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res 117, D13204. doi:10.1029/2012JD017585

    Article  Google Scholar 

  • Kulkarni S (2012) The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): overview and preliminary results. Curr Sci 12:413–425

    Google Scholar 

  • Kusunoki K, Saito S, Inoue H (2012) Radar and surface mesonet observations of convection initiation associated with seabreeze front and outflow boundary. ERAD 2012—the seventh European conference on radar in meteorology and hydrology

  • Lee M-I, Schubert SD, Suarez MJ, Bell TL, Kim K-M (2007) Diurnal cycle of precipitation in the NASA seasonal to interannual prediction project atmospheric general circulation model. J Geophys Res 112, D16111. doi:10.1029/2006JD008346

    Article  Google Scholar 

  • Lima MA, Wilson JW (2008) Convective storm initiation in a moist tropical environment. Mon Weather Rev 136:1847–1864. doi:10.1175/2007MWR2279.1

    Article  Google Scholar 

  • Lin X, Randall DA, Fowler L (2000) Diurnal variability of the hydrologic cycle and radiative fluxes: comparisons between observations and a GCM. J Climate 13:4159–4179

    Article  Google Scholar 

  • Liu C, Zipser EJ (2008) Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys Res Lett 35, L04819. doi:10.1029/2007GL032437

    Google Scholar 

  • Machado LAT, Laurent H, Lima AA (2002) Diurnal march of the convection observed during TRMM-WETAMC/LBA. J Geophys Res 107(D20):8064. doi:10.1029/2001JD000338, 2002

    Article  Google Scholar 

  • Mackeen P, Brooks H, Elmore K (1999) Radar reflectivity-derived thunderstorm parameters applied to storm longevity forecasting Notes and correspondence. Weather Forecast 14:289–295

    Article  Google Scholar 

  • Madhulatha A, Rajeevan M, Venkat Ratnam M, Bhate J, Naidu CV (2013) Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J Geophys Res Atmos 118:1–13. doi:10.1029/2012JD018174

    Article  Google Scholar 

  • Mapes BE (1993) Gregarious tropical convection. J Atmos Sci 50:2026–2037

    Article  Google Scholar 

  • Marsham JH, Morcrette CJ, Browning KA, Blyth AM, Parker DJ, Corsmeier U, Kalthoff N, Kohler M (2007) Variable cirrus shading during CSIP IOP 5. I: effects on the initiation of convection. Q J R Meteorol Soc 133:1643–1660

    Article  Google Scholar 

  • May PT, Ballinger A (2007) The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon Weather Rev 135:82–92. doi:10.1175/MWR3273.1

    Article  Google Scholar 

  • Mecikalski JR, Bedka KM (2006) Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon Weather Rev 134:49–78. doi:10.1175/MWR3062.1

    Article  Google Scholar 

  • Mecikalski JR, Bedka KM, Paech SJ, Litten LA (2008) A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon Weather Rev 136:4899–4914. doi:10.1175/2008MWR2352.1

    Article  Google Scholar 

  • Narendra Babu A, Nee JB, Kishore Kumar K (2010) Seasonal and diurnal variation of convective available potential energy (CAPE) using COSMIC/FORMOSAT-3 observations over the tropics. J Geophys Res 115(D04102). http://dx.doi.org/10.1029/2009JD012535

  • Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16:1456–1475

    Article  Google Scholar 

  • Pascual R, Callado A, Berenguer M (2004) Convective storm initiation in central Catalonia. Third European conference on radar meteorology (ERAD) in conjunction with COST 717 final seminar. Visby (Sweden), 6–10 September 2004

  • Pereira LG, Rutledge SA (2006) Diurnal cycle of shallow and deep convection for a tropical land and an ocean environment and its relationship to synoptic wind regimes. Monthly Weather Review 134, 2688–2701. doi: http://dx.doi.org/10.1175/MWR3181.1.

  • Pinto J, Phillips C, Steiner M, Rasmussen R, Oien N, Dixon M, Wang W, Weisman M (2007) Assessment of the statistical characteristics of thunderstorms simulated with the WRF model using convection-permitting resolution. Preprints, 33rd Conf. on radar meteorology, Cairns, Australia, Amer Meteor Soc, 5.5. [Available online at https://ams.confex.com/ ams/pdfpapers/123712.pdf.]

  • Potts RJ, Keenan TD, May PT (2000) Radar characteristics of storms in the Sydney area. Mon Wea Rev 128:3308–3319

    Article  Google Scholar 

  • Prabha TV, Goswami BN, Murthy BS, Kulkarni JR (2011) Nocturnal low-level jet and ‘atmospheric streams’ over the rain shadow region of Indian Western Ghats. Q J R Meteorol Soc. doi:10.1002/qj.818

    Google Scholar 

  • Rajeevan M, Kesarkar A, Thampi SB, Rao TN, Radhakrishna B, Rajasekhar M (2010) Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann Geophys 28:603–619. doi:10.5194/angeo-28-603-2010

    Article  Google Scholar 

  • Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40(3–4):637–650

    Article  Google Scholar 

  • Raut BA, Karekar RN, Puranik DM (2009) Spatial distribution and diurnal variation of cumuliform clouds during Indian summer monsoon. J Geophys Res 114, D11208. doi:10.1029/2008JD011153

    Article  Google Scholar 

  • Roca R, Ramanathan V (2000) Scale dependence of monsoonal convective systems over the Indian Ocean. J Clim 13:1286–1298. doi:10.1175/1520-0442(2000)013<1286:SDOMCS>2.0.CO;2

    Article  Google Scholar 

  • Romatschke U, Medina S, Houze RA Jr (2010) Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Clim 23:419–439

    Article  Google Scholar 

  • Ruchith RD, Kalapureddy MCR, Deshpande S, Dani KK, Raj PE (2014) Inter-comparison of wind profiles in the tropical boundary layer remotely sensed from GPS radiosonde and Doppler wind lidar. Int J Remote Sens 35(9):3300–3315. doi:10.1080/01431161.2014.902552

    Article  Google Scholar 

  • Sahany S, Venugopal V, Nanjundiah RS (2010) Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J Geophys Res 115, D02103. doi:10.1029/2009JD012644

    Article  Google Scholar 

  • Sen Roy S, Balling RC (2007) Diurnal variations in summer season precipitation in India. Int J Climatol 27:969–976. doi:10.1002/joc.1458

    Article  Google Scholar 

  • Sen Roy S, Sen Roy S (2014) Diurnal variation in the initiation of rainfall over the Indian subcontinent during two different monsoon seasons of 2008 and 2009. Theor Appl Climatol 117(1–2):277–291

    Article  Google Scholar 

  • Soden BJ (2000) The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys Res Lett 27:2173–2176

    Article  Google Scholar 

  • Subrahmanyam KV, Kishore Kumar K, Narendra Babu A (2015) Phase relation between CAPE and precipitation at diurnal scales over the Indian summer monsoon region. Atmos Sci Let. doi:10.1002/asl2.566

    Google Scholar 

  • Sui C-H, Lau K-M, Takayabu YN, Short DA (1997) Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J Atmos Sci 54:639–655. doi:10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2

    Article  Google Scholar 

  • Takahashi HG, Fujinami H, Yasunari T, Matsumoto J (2010) Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM‐PR) around the Indochina peninsula. J Geophys Res 115, D07109. doi:10.1029/2009JD012155

  • Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: satellites versus a general circulation model. J Geophys Res 109:D10101. doi:10.1029/2003JD004117

    Article  Google Scholar 

  • Tucker DF, Li X (2009) Characteristics of warm season precipitating storms in the Arkansas–Red River basin. J Geophys Res 114, D13108. doi:10.1029/2008JD011093

    Article  Google Scholar 

  • Varikoden H, Preethi B, Revadekar JV (2012) Diurnal and spatial variation of Indian summer monsoon rainfall by tropical rainfall measuring mission rain rate. J Hydrol. doi:10.1016/ j.hydrol.2012.09.056

    Google Scholar 

  • Wang Y, Han L, Wang H (2014) Statistical characteristics of convective initiation in the Beijing-Tianjin region revealed by six-year radar data. J Meteor Res 28:1127–1136

    Article  Google Scholar 

  • Weckwerth TM (2004) An overview of the international H2O Project (IHOP_2002) and some preliminary highlights. Bull Am Meteorol Soc 85:253–277. doi:10.1175/BAMS-85-2-253

    Article  Google Scholar 

  • Weckwerth TM, Parsons DB (2006) A review of convection initiation and motivation for IHOP_2002. Mon Weather Rev 134:5–22

    Article  Google Scholar 

  • Weckwerth TM, Wilson JW, Hagen M, Emerson TJ, Pinto JO, Rife DL, Grebe L (2011) Radar climatology of the COPS region. Q J R Meteorol Soc 137:31–41. doi:10.1002/qj.747

    Article  Google Scholar 

  • Wilson JW, Roberts RD (2006) Summary of convective storm initiation and evolution during IHOP: observational and modeling perspective. Mon Weather Rev 134:23–47. doi:10.1175/MWR3069.1

    Article  Google Scholar 

  • Wilson JW, Schreiber WE (1986) Initiation of convective storms by radar-observed boundary layer convergent lines. Mon Wea Rev 114:2516–2536

    Article  Google Scholar 

  • Wonsick MM, Pinker RT, Govaerts Y (2009) Cloud variability over the Indian monsoon region as observed from satellites. J Appl Meteor Clim 48:1803–1821. doi:10.1175/2009JAMC2027.1

    Article  Google Scholar 

  • Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2

    Article  Google Scholar 

  • Yang S, Smith EA (2006) Mechanisms of diurnal variability of global tropical rainfall as observed from TRMM. J Clim 19:5190–5226

    Article  Google Scholar 

  • Yin SQ, Chen DL, Xie Y (2009) Diurnal variations of precipitation during the warm season over China. Int J Climatol 29:1154–1170

    Article  Google Scholar 

  • Yu R, Xu Y, Zhou T, Li J (2007) Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys Res Lett 34, L13703. doi:10.1029/2007GL030315

    Google Scholar 

Download references

Acknowledgments

The Indian Institute of Tropical Meteorology (IITM) and the CAIPEEX experiment are fully funded by the Ministry of Earth Sciences (MoES), Government of India, New Delhi. Neelam Malap acknowledges the support from MoES to the University of Pune under the CTCZ project. We also want to acknowledge the contribution of several of our colleagues in their dedicated help with data collection and the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EA Resmi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resmi, E., Malap, N., Kulkarni, G. et al. Diurnal cycle of convection during the CAIPEEX 2011 experiment. Theor Appl Climatol 126, 351–367 (2016). https://doi.org/10.1007/s00704-015-1595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1595-7

Keywords

Navigation