Skip to main content

Observed trends in light precipitation events over global land during 1961–2010

Abstract

Based on daily station precipitation data, this study investigates the trends in light precipitation events (less than the 50th percentile) over global land during 1961–2010. It is found that the frequency of light precipitation events decreases over East China (EC) and northern Eurasia (NE) but increases over the United States of America (US), Australia (AU), and the Iberian Peninsula (IP). However, the trends in the intensity of light precipitation events are opposite to those in frequency. We find that the trends in light precipitation events are possibly associated with the changes in static stability. Over EC and NE (US, AU, and IP), the static stability weakens (strengthens) during 1961–2010. The weakening (strengthening) of static stability leads to increase (decrease) in precipitation intensity due to the enhancement (reduction) of upward motion; light (relatively heavier) precipitation events accordingly shift toward relatively heavier (light) precipitation, and the frequency of light precipitation events decreases (increases) consequently.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alexander LV et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005jd006290

    Google Scholar 

  2. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484. doi:10.1126/science.1160787

    Article  Google Scholar 

  3. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  4. Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239. doi:10.1007/bf00198617

    Article  Google Scholar 

  5. Bryan GH, Fritsch JM (2000) Moist absolute instability: the sixth static stability state. Bull Am Meteorol Soc 81:1207–1230. doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2

    Article  Google Scholar 

  6. Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J Geophys Res Atmos 111:D05101. doi:10.1029/2005jd006280

    Article  Google Scholar 

  7. Donat MG et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118:2098–2118. doi:10.1002/jgrd.50150

    Article  Google Scholar 

  8. Durre I, Menne MJ, Gleason BE, Houston TG, Vose RS (2010) Comprehensive automated quality assurance of daily surface observations. J Appl Meteorol Climatol 49:1615–1633. doi:10.1175/2010jamc2375.1

    Article  Google Scholar 

  9. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425. doi:10.1175/1520-0477(2000)081<0417:ovatie>2.3.co;2

    Article  Google Scholar 

  10. Fujibe F, Yamazaki N, Katsuyama M, Kobayashi K (2005) The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. SOLA 1:41–44. doi:10.2151/sola.2005-012

    Article  Google Scholar 

  11. Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi:10.1175/2011jcli3979.1

    Article  Google Scholar 

  12. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    Article  Google Scholar 

  13. Groisman PY et al (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Chang 42:243–283. doi:10.1023/a:1005432803188

    Article  Google Scholar 

  14. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350. doi:10.1175/jcli3339.1

    Article  Google Scholar 

  15. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/jcli3990.1

    Article  Google Scholar 

  16. Hennessy KJ, Gregory JM, Mitchell JFB (1997) Changes in daily precipitation under enhanced greenhouse conditions. Clim Dyn 13:667–680. doi:10.1007/s003820050189

    Article  Google Scholar 

  17. Huang G, Wen G (2013) Spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere. Chin Sci Bull 58:1402–1411. doi:10.1007/s11434-012-5593-1

    Article  Google Scholar 

  18. Johnson NC, Xie S-P (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845. doi:10.1038/ngeo1008

    Article  Google Scholar 

  19. Joshi M, Gregory J, Webb M, Sexton DH, Johns T (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465. doi:10.1007/s00382-007-0306-1

    Article  Google Scholar 

  20. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

    Article  Google Scholar 

  21. Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79:231–241. doi:10.1175/1520-0477(1998)079<0231:stopaf>2.0.co;2

    Article  Google Scholar 

  22. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723. doi:10.1126/science.1090228

    Article  Google Scholar 

  23. Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Clim 16:3560–3571. doi:10.1175/1520-0442(2003)016<3560:comaot>2.0.co;2

    Article  Google Scholar 

  24. Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2

    Article  Google Scholar 

  25. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680. doi:10.1175/1520-0442(2003)016<3665:tiiodt>2.0.co;2

    Article  Google Scholar 

  26. Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  27. Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527. doi:10.1175/1520-0442(1999)012<2515:lttiep>2.0.co;2

    Article  Google Scholar 

  28. Lee J-Y, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  29. Liu SC, Fu C, Shiu C-J, Chen J-P, Wu F (2009) Temperature dependence of global precipitation extremes. Geophys Res Lett 36:L17702. doi:10.1029/2009gl040218

    Article  Google Scholar 

  30. Liu J, Wang B, Cane MA, Yim S-Y, Lee J-Y (2013) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493:656–659. doi:10.1038/nature11784

    Article  Google Scholar 

  31. Mattar C, Sobrino JA, Julien Y, Morales L (2011) Trends in column integrated water vapour over Europe from 1973 to 2003. Int J Climatol 31:1749–1757. doi:10.1002/joc.2186

    Article  Google Scholar 

  32. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29:897–910. doi:10.1175/jtech-d-11-00103.1

    Article  Google Scholar 

  33. National Centers for Environmental Prediction NWS, NOAA, U. S. Department of Commerce (2000) NCEP FNL Operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder

    Google Scholar 

  34. New M, Hulme M, Jones P (2000) Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. doi:10.1175/1520-0442(2000)013<2217:rtcstc>2.0.co;2

    Article  Google Scholar 

  35. Osborn TJ, Hulme M, Jones PD, Basnett TA (2000) Observed trends in the daily intensity of United Kingdom precipitation. Int J Climatol 20:347–364. doi:10.1002/(sici)1097-0088(20000330)20:4<347::aid-joc475>3.0.co;2-c

    Article  Google Scholar 

  36. Pall P, Allen M, Stone D (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363. doi:10.1007/s00382-006-0180-2

    Article  Google Scholar 

  37. Peppler RA, Lamb PJ (1989) Tropospheric static stability and Central North American growing season rainfall. Mon Weather Rev 117:1156–1180. doi:10.1175/1520-0493(1989)117<1156:tssacn>2.0.co;2

    Article  Google Scholar 

  38. Qian Y, Gong DY, Fan JW, Leung LR, Bennartz R, Chen D, Wang WG (2009) Heavy pollution suppresses light rain in China: observations and modeling. J Geophys Res Atmos 114:D00K02. doi:10.1029/2008jd011575

    Article  Google Scholar 

  39. Qian Y, Gong DY, Leung R (2010) Light rain events change over North America, Europe, and Asia for 1973–2009. Atmos Sci Lett 11:301–306. doi:10.1002/Asl.298

    Article  Google Scholar 

  40. Richter I, Xie S-P (2008) Muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res Atmos 113:D24118. doi:10.1029/2008jd010561

    Article  Google Scholar 

  41. Ross RJ, Elliott WP (1996) Tropospheric water vapor climatology and trends over North America: 1973–93. J Clim 9:3561–3574. doi:10.1175/1520-0442(1996)009<3561:twvcat>2.0.co;2

    Article  Google Scholar 

  42. Ross RJ, Elliott WP (2001) Radiosonde-based northern hemisphere tropospheric water vapor trends. J Clim 14:1602–1612. doi:10.1175/1520-0442(2001)014<1602:rbnhtw>2.0.co;2

    Article  Google Scholar 

  43. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Paper presented at the Proceedings of the 1968 23rd ACM national conference

  44. Shepard D (1984) Computer mapping: the SYMAP interpolation algorithm. In: Gaile G, Willmott C (eds) Spatial statistics and models, vol 40. Theory and decision library, vol 40. Springer, Netherlands, pp 133–145. doi:10.1007/978-94-017-3048-8_7

    Google Scholar 

  45. Shiu C-J, Liu SC, Fu C, Dai A, Sun Y (2012) How much do precipitation extremes change in a warming climate? Geophys Res Lett 39:L17707. doi:10.1029/2012gl052762

    Article  Google Scholar 

  46. Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423. doi:10.1175/1520-0469(1979)036<0415:alrrat>2.0.co;2

    Article  Google Scholar 

  47. Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain? J Clim 20:4801–4818. doi:10.1175/jcli4263.1

    Article  Google Scholar 

  48. Suppiah R, Hennessy KJ (1998) Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int J Climatol 18:1141–1164. doi:10.1002/(sici)1097-0088(199808)18:10<1141::aid-joc286>3.0.co;2-p

    Article  Google Scholar 

  49. Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim Chang 39:667–694. doi:10.1023/A:1005319109110

    Article  Google Scholar 

  50. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang 42:327–339. doi:10.1023/A:1005488920935

    Article  Google Scholar 

  51. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  52. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/bams-84-9-1205

    Article  Google Scholar 

  53. Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  54. Wen G, Huang G, Hu K, Qu X, Tao W, Gong H (2015) Changes in the characteristics of precipitation over northern Eurasia. Theor Appl Climatol 119:653–665. doi:10.1007/s00704-014-1137-8

    Article  Google Scholar 

  55. Xiang B, Wang B, Lauer A, Lee J-Y, Ding Q (2014) Upper tropospheric warming intensifies sea surface warming. Clim Dyn 43:259–270. doi:10.1007/s00382-013-1928-0

    Article  Google Scholar 

  56. Xie B, Zhang Q, Ying Y (2011) Trends in precipitable water and relative humidity in China: 1979–2005. J Appl Meteorol Climatol 50:1985–1994. doi:10.1175/2011jamc2446.1

    Article  Google Scholar 

  57. Zhai PM, Zhang XB, Wan H, Pan XH (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

  58. Zhang X, Hogg WD, Mekis É (2001) Spatial and temporal characteristics of heavy precipitation events over Canada. J Clim 14:1923–1936. doi:10.1175/1520-0442(2001)014<1923:satcoh>2.0.co;2

    Article  Google Scholar 

  59. Zveryaev II, Chu P-S (2003) Recent climate changes in precipitable water in the global tropics as revealed in National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis. J Geophys Res Atmos 108:4311. doi:10.1029/2002jd002476

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB955604 and 2011CB309704), the National Science Fund for Distinguished Young Scholars (41425019), the National Natural Science Foundation of China (41275083 and 91337105), the Scientific Research Starting Foundation of Guangzhou Institute of Tropical and Marine Meteorology (1420200137), and the Guangdong Science and Technology Plan Project (2012A061400012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, G., Huang, G., Tao, W. et al. Observed trends in light precipitation events over global land during 1961–2010. Theor Appl Climatol 125, 161–173 (2016). https://doi.org/10.1007/s00704-015-1500-4

Download citation

Keywords

  • Iberian Peninsula
  • Precipitation Event
  • Precipitable Water
  • Precipitation Intensity
  • Boreal Summer