Skip to main content

Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations

Abstract

Characteristics of cyclones (frequency, intensity and size) and their changes in the Arctic region in a warmer climate have been analyzed with the use of the HIRHAM regional climate model simulations with SRES-A1B anthropogenic scenario for the twenty first century. The focus was on cyclones for the warm (April–September) and cold (October–March) seasons. The present-day cyclonic characteristics from HIRHAM simulations are in general agreement with those from ERA–40 reanalysis data. Differences noted for the frequency of cyclones are related with different spatial resolution in the model simulations and reanalysis data. Potential future changes in cyclone characteristics at the end of the twenty first century have been analyzed. According to the model simulations, the frequency of cyclones is increasing in warm seasons and decreasing in cold seasons for a warmer climate in the twenty first century, but these changes are statistically insignificant. Noticeable changes were detected for the intensity and size of cyclones for the both seasons. Significant increase was found for the frequency of weak cyclones during cold season. Further, a general increase in the frequency of small cyclones was calculated in cold seasons, while its frequency decreases in warm seasons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akperov MG, Mokhov II (2010) A comparative analysis of the method of extratropical cyclone identification. Izvestiya Atmos Oceanic Phys 46 (5):574–590

    Article  Google Scholar 

  2. Akperov MG, Mokhov II (2013) Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Izvestiya Atmos Oceanic Phys 49 (2):113–120

    Article  Google Scholar 

  3. Akperov MG, Bardin MYu, Volodin EM, Golitsyn GS, Mokhov II (2007) Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model. Izvestiya Atmos Ocean Phys 43:705–712

    Article  Google Scholar 

  4. Bardin MYu, Polonsky AB (2005) North Atlantic oscillation and synoptic variability in the European–Atlantic region in winter. Izvestiya Atmos Ocean Phys 41:127–136

    Google Scholar 

  5. Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface-air temperature variations and modern Arctic warming. J Clim 23:3888–3906. doi:10.1175/2010JCL13297.1

    Article  Google Scholar 

  6. Brümmer B, Thiemann S (2000) A cyclone statistics for the Arctic based on European Centre re-analysis data. Meteorol Atmos Phys 75:233–250

    Article  Google Scholar 

  7. Colle BA, Zhang Z, Lombardo KA, Chang E, Liu P, Zhang M (2013) Historical evaluation and future prediction of Eastern North American and Western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J Clim 26:6882–6903. doi:10.1175/JCLI%2DD%2D12%2D00498.1

    Article  Google Scholar 

  8. Dethloff K, Rinke A, Lehmann R, Christensen JH, Botzet M, Machenhauer B (1996) Regional climate model of the Arctic atmosphere. J Geophys Res 101D(18):23401–23422

    Article  Google Scholar 

  9. Golitsyn GS, Mokhov II, Akperov MG, Bardin MYu (2007) Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: an instrument for the determination of global climate variations. Doklady Earth Sci 413(1):324–326. doi:10.1134/S1028334X07020432

    Article  Google Scholar 

  10. Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett 32:L19714. doi:10.1029/2005GL023640

    Article  Google Scholar 

  11. Gryanik VM, Doronina TN, Mokhov II, Tevs MV (1993) Changes in dimensions of atmospheric vortices under climatic changes. Izvestiya Atmos Ocean Phys 29(5):596–607

    Google Scholar 

  12. Inoue J, Masatake EH, Koutarou T (2012) The role of Barents sea ice in the wintertime cyclone track and emergence of a warm-arctic cold-Siberian anomaly. J Clim 25:2561–2568. doi:10.1175/JCLI%2DD%2D11%2D00449.1

    Article  Google Scholar 

  13. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea–ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707

    Article  Google Scholar 

  14. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 62:1–9

    Google Scholar 

  15. Khon VC, Mokhov II, Latif M, Semenov VA, Park W (2010) Perspectives of Northern Sea Route and Northwest Passage in the twenty first century. Clim Chang. doi:10.1007/s10584-009-9683-2

  16. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  17. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The max-planck-institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  18. Matthes H, Rinke A, Dethloff K (2010) Variability of extreme temperature in the Arctic–observation and RCM. Open Atm Sci J 4: 126–136. doi:10.2174/1874282301004010126

    Google Scholar 

  19. McCabe GJ, Clark MP, Serreze MC (2001) Trends in Northern hemisphere surface cyclone frequency and intensity. J Clim 14 (12):2763–2768

    Article  Google Scholar 

  20. Mokhov II, Khon VC (2005) Interannual variability and long-term tendencies of change in atmospheric centers of action in the Northern hemisphere: Analyses of observational data, Izvestiya. Atmos Ocean Phys 41 (6):657–666

    Google Scholar 

  21. Mokhov II, Akperov MG, Lagun VE, Lutsenko EI (2007) Intense arctic mesocyclones. Izvestiya Atmos Ocean Phys 43 (3):259–265

    Article  Google Scholar 

  22. Mokhov II, Mokhov OI, Petukhov VK, Khayrullin RR (1992) Effect of global climatic changes on the cyclonic activity in the atmosphere. Izvestiya Atmos Ocean Phys 28 (1):7–18

    Google Scholar 

  23. Neu U et al (2013) IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Met Soc 94:529–547. doi:10.1175/BAMS%2DD%2D11%2D00154.1

    Article  Google Scholar 

  24. Orsolini YJ, Sorteberg A (2009) Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model. Atmos Ocean Sci Lett 2:62–67

    Article  Google Scholar 

  25. Overland JE, Spillane MC, Percival DB, Wang MY, Mofjeld HO (2004) Seasonal and regional variation of pan–Arctic surface air temperature over the instrumental record. J Clim 17 (17): 3263–3282

    Article  Google Scholar 

  26. Overland JE, Wang MY (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 64:11595. doi:10.1175/2010JCL13297.1

    Google Scholar 

  27. Parkinson CL, Comiso JC (2013) On the 2012 record low Arc tic sea ice cover: Combined impact of preconditioning and an August storm. Geophys Res Lett 40:1356–1361. doi:10.3402/tellusa.v64i0.11595

    Article  Google Scholar 

  28. Petoukhov V, Semenov V (2010) A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111

    Article  Google Scholar 

  29. Raible CC, Della-Marta P, Schwierz C, Wernli H, Blender R (2008) Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Wea Rev 136:880–897

    Article  Google Scholar 

  30. Rinke A, Dethloff K (2008) Simulated circum–Arctic climate changes by the end of the 21st century. Global Planet Chang 62:173–186

    Article  Google Scholar 

  31. Rinke A, Matthes H, Dethloff K (2010) Regional characteristics of Arctic temperature variability: Comparison of regional climate simulations with observations. Clim Res 41:177–192. doi:10.3354/cr00854

    Article  Google Scholar 

  32. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description, Rep 349. Max Planck Institute for Meteorology, Hamburg

  33. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  34. Schneidereit A, Blender R, Fraedrich K (2010) A radius–depth model for midlatitude cyclones in reanalysis data and simulations. Q J R Meteorol Soc 136:50–60. doi:10.1002/qj.523

    Article  Google Scholar 

  35. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464: 1334–13379

    Article  Google Scholar 

  36. Sepp M, Jaagus J (2011) Changes in the activity and tracks of Arctic cyclones. Clim Chang 105(3–4):577–595. doi:10.1007/s10584%2D010%2D9893%2D7

    Article  Google Scholar 

  37. Serreze MC, Walsh JE, I Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry R G (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46(1–2):159–207. doi:10.1023/A:1005504031923

    Article  Google Scholar 

  38. Shkolnik IM, Efimov SV (2013) Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ Res Lett 8:045007. doi:10.1088/1748%2D9326/8/4/045007

    Article  Google Scholar 

  39. Simmonds I, Burke C, Keay K (2008) Arctic climate change as manifest in cyclone behavior. J Clim 21:5777–5796

    Article  Google Scholar 

  40. Simmonds I, Rudeva I (2012) The great Arctic cyclone of August 2012. Geophys Res Lett 39:L23709. doi:10.1029/2012GL054259

    Article  Google Scholar 

  41. Smedsrud LH et al (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys 51:415–449. doi:10.1002/rog.20017

    Article  Google Scholar 

  42. Stroeve JC, Serreze MC, Holland MM, Kay JE, Maslanik J et al (2011) The Arctics rapidly shrinking sea ice cover: a research synthesis. Clim Chang. doi:10.1007/s10584%2D011%2D0101%2D1

  43. Tilinina N, Gulev SK, Bromwich DH (2014) New view of Arctic cyclone activity from the Arctic system reanalysis. Geophys Res Lett 41:17666–1772. doi:10.1002/2013GL058924

    Article  Google Scholar 

  44. Ulbrich U et al (2013) Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking methodology? Meteorol Z 22:61–68. doi:10.1127/0941%2D2948/2013/0420

    Article  Google Scholar 

  45. Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  46. Vavrus SJ (2013) Extreme Arctic cyclones in CMIP5 historical simulations. Geophys Res Lett 40:6208–6212. doi:10.1002/2013GL058161

    Article  Google Scholar 

  47. Xia L, Zahn M, Hodges KI, Feser F, von Storch H (2012) A comparison of two identification and tracking methods for polar lows. Tellus A 64:17196

    Article  Google Scholar 

  48. Zahn M, von Storch H (2010) Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature 467:309–312

    Article  Google Scholar 

  49. Zappa G, Len CS, Kevin IH, Sansom PG, Stephenson DB (2013) A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J Clim 26:5846–5862 . doi:10.1175/JCLI%2DD%2D12%2D00573.1

    Article  Google Scholar 

  50. Zhang X et al (2012) Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ Res Lett 7:044044. doi:10.1088/1748%2D9326/7/4/044044

    Article  Google Scholar 

  51. Zhang X, Walsh JE, Zhang J, Bhatt US, Ikeda M (2004) Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J Clim 17:2300–2317

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their careful comments that helped to improve the manuscript. This work was supported by the RSF (grant 14-17-00806).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mirseid Akperov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akperov, M., Mokhov, I., Rinke, A. et al. Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations. Theor Appl Climatol 122, 85–96 (2015). https://doi.org/10.1007/s00704-014-1272-2

Download citation

Keywords

  • Cyclone
  • Reanalysis Data
  • Warm Season
  • Cold Season
  • Arctic Region