Skip to main content

Sharp rise in hurricane and cyclone count during the last century

Abstract

In the present analysis, we study the North Atlantic hurricanes and the tropical cyclones over the Atlantic, attempting to statistically contribute to the study of the recently observed rapid shifts of sea surface temperature anomalies (SSTa) and hurricane activity. Indeed, the annual values of hurricane count (HC), during 1900–2012, seem to show two abrupt increasing events which temporally coincide with the SST shifts. Moreover, the superposition of a staircase function on the Southern Oscillation Index (SOI) after removing the effect of the Pacific Decadal Oscillation (PDO) and the quasi-biennial oscillation (QBO) provides a good fit to the observed HC values. In addition, the annual values of the tropical cyclone count (TCC), during 1900–2006, analyzed with the same procedure as that of HC exhibit similar features to those of the HC values, revealing abrupt shifts in the same years. Furthermore, the application of two shift detection statistical methods determines more accurately the intervals where the shifts occur for each of the three parameters (SSTa, HC, and TCC). Nevertheless, the undersampling of hurricane numbers during early and mid-twentieth century due to the observing capabilities may have contributed to the first rapid shift in hurricane activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe S, Sarlis NV, Skordas ES, Tanaka HK, Varotsos PA (2005) Origin of the usefulness of the natural-time representation of complex time series. Phys Rev Lett 94(17)170601

  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteer DM, Pielke RS, Pierrenhumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  Google Scholar 

  3. Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J Clim 19:590–612

    Article  Google Scholar 

  4. Belolipetsky PV, Bartsev SI, Degermendzhi AG, Hsu HH, Varotsos CA (2013) Empirical evidence for a double step climate change in twentieth century. http://arxiv.org/ftp/arxiv/papers/1303/1303.1581.pdf

  5. Brooks CEP (1925) The problem of mild polar climates. Q J R Meteorol Soc 51:83–94

    Article  Google Scholar 

  6. Budyko MI (1962) Some ways of influencing the climate. Meteorol Gidrol 2:3–8

    Google Scholar 

  7. Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39, L18607. doi:10.1029/2012GL052885

    Google Scholar 

  8. Chang EKM, Guo Y (2007) Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys Res Lett 34, L14801. doi:10.1029/2007GL030169

    Article  Google Scholar 

  9. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505. doi:10.1002/jgrd.50125

    Article  Google Scholar 

  10. Douglass DH (2010) Topology of Earth’s climate indices and phase-locked states. Phys Lett A 374:4164–4168

    Article  Google Scholar 

  11. Elsner JB, Jagger T, Niu XF (2000) Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophys Res Lett 27(12):1743–1746

    Article  Google Scholar 

  12. Elsner JB, Niu XF, Jagger TH (2004) Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J Clim 17(13):2652–2666

    Article  Google Scholar 

  13. Elsner JB, Tsonis AA, Jagger TH (2006) High-frequency variability in hurricane power dissipation and its relationship to global temperature. Am Meteorol Soc 87:763–768

    Article  Google Scholar 

  14. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi:10.1038/nature07234

    Article  Google Scholar 

  15. Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  16. Goldenberg SB, Landsea CW, Mestas-Nuρez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479

    Article  Google Scholar 

  17. Graham NE (1995) Simulation of recent global temperature trends. Science 267(5198):666–671

    Article  Google Scholar 

  18. Gray WM (2009) Climate change: driven by the ocean—not humans. The Steamboat Institute Conference, Steamboat Springs, Colorado, August 29, 2009. http://tropical.atmos.colostate.edu/Includes/Documents/Presentations/graysteamboat2009.ppt

  19. Humphreys WJ (1932) This cold, cold world. Atlantic:749–54

  20. Kleinbaum DG, Kupper LL (1978) Applied regression analysis and other multivariable methods, Duxbury, Boston, p 556(1978)

  21. Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2(178). doi:10.1038/ncomms1186

  22. Kondratyev KY, Grassl H (1993) Global climate change in the context of global change (in Russian). Academic Science, 195 pp

  23. Kondratyev KY, Varotsos C (1995) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151

    Article  Google Scholar 

  24. Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88:1767–1781

    Article  Google Scholar 

  25. Kozar ME, Mann ME, Camargo SJ et al (2012) Stratified statistical models of North Atlantic basin-wide and regional tropical cyclone counts. J Geophys Res-Atmos 117, D18103. doi:10.1029/2011JD017170

    Article  Google Scholar 

  26. Landsea CW, Pielke RA Jr, Mestas-Nuρez AM, Knaff JA (1999) Atlantic basin hurricanes: indices of climatic changes. Clim Chang 42:89–129

    Article  Google Scholar 

  27. Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on Atlantic tropical cyclone counts. J Clim 23:2508–2519

    Article  Google Scholar 

  28. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf W, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. PNAS 105:1786–1793. doi:10.1073/pnas.0705414105

    Article  Google Scholar 

  29. Liu Y, Liu CX, Wang HP, Tie XX, Gao ST, Kinnison D, Brasseur G (2009) Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. Atmos Chem Phys 9(6):2157–2170

    Article  Google Scholar 

  30. Lovejoy S (2013) What is climate? Eos Trans Am Geophys Union 94(1):1–2

    Article  Google Scholar 

  31. Lovejoy S, Schertzer D (2012) Stochastic and scaling climate sensitivities: solar, volcanic and orbital forcings. Geophys Res Lett 39, L11702. doi:10.1029/2012GL051871

    Google Scholar 

  32. McCulloch A (2003) Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J Fluor Chem 123(1):21–29

    Article  Google Scholar 

  33. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686. doi:10.1029/97GL00504

    Article  Google Scholar 

  34. Peavoy D, Franzke C (2010) Bayesian analysis of rapid climate change during the last glacial using Greenland delta O-18 data. Clim Past 6:787–794. doi:10.5194/cp-6-787-2010

    Article  Google Scholar 

  35. Rodionov S (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31, L09204. doi:10.1029/2004GL019448

    Google Scholar 

  36. Sabbatelli TA, Mann ME (2007) The influence of climate state variables on Atlantic tropical cyclone occurrence rates. J Geophys Res-Atmos 112(D17), D17114. doi:10.1029/2007JD008385

    Article  Google Scholar 

  37. Sarlis NV, Skordas ES, Lazaridou MS, Varotsos PA (2008) Investigation of seismicity after the initiation of a seismic electric signal activity until the main shock. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 84:331–343

  38. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 60–70 years. Nature 367:723–726

    Article  Google Scholar 

  39. Solow AR, Beet AR (2008) On the incompleteness of the historical record of North Atlantic tropical cyclones. Geophys Res Lett 35(11), L11803. doi:10.1029/2008GL033546

    Article  Google Scholar 

  40. Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34, L13705. doi:10.1029/2007gl030288

    Google Scholar 

  41. Varotsos C (1987) Quasi-stationary planetary waves and temperature reference atmosphere. Meteorol Atmos Phys 37:297–299

    Article  Google Scholar 

  42. Varotsos C (1989) Connections between the 11-year solar cycle, the QBO and total ozone—comments. J Atmos Terr Phys 51:367–370

    Article  Google Scholar 

  43. Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res 9(6):375–376

    Article  Google Scholar 

  44. Varotsos C (2003) What is the lesson from the unprecedented event over Antarctica in 2002? Environ Sci Pollut Res 10(2):80–81

    Article  Google Scholar 

  45. Varotsos C (2004) The extraordinary events of the major, sudden stratospheric warming, the diminutive Αntarctic ozone hole, and its split in 2002. Environ Sci Pollut Res 11(6):405–411

    Article  Google Scholar 

  46. Varotsos C (2005a) Power-law correlations in column ozone over Antarctica. Int J Rem Sens 26(16):3333–3342

    Google Scholar 

  47. Varotsos C (2005b) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geoph Res: Atmospheres 110(D9):D09202. doi:10.1029/2004JD005397

  48. Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Rem Sens 27(16):3593–3603. doi:10.1080/01431160600617236

    Google Scholar 

  49. Varotsos C, Efstathiou M (2013) Is there any long-term memory effect in the tropical cyclones? Theor Appl Climatol. 114(3-4)643–650. doi:10.1007/s00704-013-0875-3

  50. Varotsos C, Franzke CLE, Efstathiou MN, Degermendzhi AG (2013) Evidence for two abrupt warming events of SST in the last century. Theoret Appl Clim: in press

  51. Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. J Clim 21(14):3580–3600

    Article  Google Scholar 

  52. Villarini G, Vecchi GA, Smith JA (2010) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138(7):2681–2705

    Article  Google Scholar 

  53. Villarini G, Vecchi GA, Smith JA (2012) US landfalling and North Atlantic hurricanes: statistical modeling of their frequencies and ratios. Mon Weather Rev 140(1):44–65

    Article  Google Scholar 

  54. Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim 23(17):4585–4607

    Article  Google Scholar 

  55. Zhen-Shan and Xian (2007) Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteor Atmos Phys 95. http://www.springerlink.com/content/g28u12g2617j5021/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. A. Varotsos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varotsos, C.A., Efstathiou, M.N. & Cracknell, A.P. Sharp rise in hurricane and cyclone count during the last century. Theor Appl Climatol 119, 629–638 (2015). https://doi.org/10.1007/s00704-014-1136-9

Download citation

Keywords

  • Tropical Cyclone
  • Pacific Decadal Oscillation
  • Southern Oscillation Index
  • Pacific Decadal Oscillation Index
  • Atlantic Tropical Cyclone