Global trends and patterns of drought from space

Abstract

This paper analyzes changes in areas under droughts over the past three decades and alters our understanding of how amplitude and frequency of droughts differ in the Southern Hemisphere (SH) and Northern Hemisphere (NH). Unlike most previous global-scale studies that have been based on climate models, this study is based on satellite gauge-adjusted precipitation observations. Here, we show that droughts in terms of both amplitude and frequency are more variable over land in the SH than in the NH. The results reveal no significant trend in the areas under drought over land in the past three decades. However, after investigating land in the NH and the SH separately, the results exhibit a significant positive trend in the area under drought over land in the SH, while no significant trend is observed over land in the NH. We investigate the spatial patterns of the wetness and dryness over the past three decades, and we show that several regions, such as the southwestern United States, Texas, parts of the Amazon, the Horn of Africa, northern India, and parts of the Mediterranean region, exhibit a significant drying trend. The global trend maps indicate that central Africa, parts of southwest Asia (e.g., Thailand, Taiwan), Central America, northern Australia, and parts of eastern Europe show a wetting trend during the same time span. The results of this satellite-based study disagree with several model-based studies which indicate that droughts have been increasing over land. On the other hand, our findings concur with some of the observation-based studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  2. AghaKouchak A, Nakhjiri N (2012) A near real-time satellite-based global drought climate data record. Environ Res Lett 7(4):044037. doi:10.1088/1748-9326/7/4/044037

    Article  Google Scholar 

  3. AghaKouchak A, Nasrollahi N, Habib E (2009) Accounting for uncertainties of the TRMM satellite estimates. Remote Sens 1(3):606–619

    Article  Google Scholar 

  4. AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (2012a) Extremes in a changing climate. Springer, Dordrecht

    Google Scholar 

  5. AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012b) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39(9):L09406

    Article  Google Scholar 

  6. AghaKouchak A, Hao Z, Nakhjiri N (2013) The global drought monitoring and predication system. Tech rep, University of California, Irvine, version 1. http://drought.eng.uci.edu/. Accessed 25 Sept 2013

  7. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa Kumar K, Revadekar J, Griffiths G (2006) Global observed changes in daily climate extremes of temperature. J Geophys Res 111:D05109

    Google Scholar 

  8. Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J Clim 24(8):2025–2044

    Article  Google Scholar 

  9. Andreadis K, Clark E, Wood A, Hamlet A, Lettenmaier D (2005) Twentieth-century drought in the conterminous United States. J Hydrometeorol 6(6):985–1001

    Article  Google Scholar 

  10. Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci USA 107(50):21271–21276

    Article  Google Scholar 

  11. Coelho CAS, Goddard L (2009) El Niño-induced tropical droughts in climate change projections. J Clim 22(23):6456–6476

    Article  Google Scholar 

  12. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65

    Article  Google Scholar 

  13. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Chang 2:52–58. doi:10.1038/nclimate1633

    Article  Google Scholar 

  14. Dirmeyer P, Gao X, Gao Z, Oki T, Hanasaki M (2006) The Global Soil Wetness Project (GSWP-2). Bull Am Meteorol Soc 87:1381–1397

    Article  Google Scholar 

  15. Easterling D (2012) Global data sets for analysis of climate extremes. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate: detection, analysis and uncertainty. Springer, New York. doi:10.1007/978-94-007-4479-012

    Google Scholar 

  16. Edwards D (1997) Characteristics of 20th century drought in the United States at multiple time scales. Tech rep, Colorado State University, Fort Collins, Colorado

  17. Fatichi S (2009) Mann-Kendall test. Tech rep, Dipartimento Ingegneria Civile e Ambientale, Universita degli Studi di Firenze

  18. Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  19. Gebremichael M, Krajewski WF, Morrissey M, Langerud D, Huffman GJ, Adler R (2003) Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J Appl Meteorol 42(12):1837–1848

    Article  Google Scholar 

  20. Hao Z, AghaKouchak A (2013a) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18. doi:10.1016/j.advwatres.2013.03.009

    Article  Google Scholar 

  21. Hao Z, AghaKouchak APT (2013b) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett. doi:10.1088/1748-9326/8/3/034014

  22. Hayes M, Svoboda M, Wilhite D, Vanyarkho O (1999) Monitoring the 1996 drought using the Standardized Precipitation Index. Bull Am Meteorol Soc 80:429–438

    Article  Google Scholar 

  23. Helsel D, Hirsh R (2010) Trend analysis, Tech rep. In: Helsel DR, Hirsh RM (eds) Statistical methods in water resources. U.S. Geological Survey, Reston

    Google Scholar 

  24. Hong Y, Hsu K, Moradkhani H, Sorooshian S (2006) Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour Res 42(8):w08421

    Google Scholar 

  25. Hsu K, Gao X, Sorooshian S, Gupta H (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190

    Article  Google Scholar 

  26. Huffman G, Adler R, Bolvin D, Nelkin E (2003) Estimating uncertainty in GPCP and TRMM multi-satellite precipitation estimates. In: IUGG XXIII: state of the planet: frontiers and challenges, Sapporo, Japan, International Union of Geodesy and Geophysics, CD-ROM, JSM18

  27. Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Stocker E, Wolff D (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  28. Janowiak J, Gruber A, Curtis S, Huffman G, Adler R, Xie P (2001) Evaluation and comparison of the CMAP and GPCP oceanic precipitation analyses. WCRP. In: SCOR workshop on intercomparison and validation of ocean–atmosphere flux fields, Bolger Center, Potomac, MD (Washington, DC area)

  29. Kendall M (1976) Rank correlation methods, 4th edn. Griffin, London

    Google Scholar 

  30. Kirono DGC, Kent DM (2011) Assessment of rainfall and potential evaporation from global climate models and its implications for Australian regional drought projection. Int J Climatol 31(9):1295–1308

    Article  Google Scholar 

  31. Mann H (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  32. Marengo JA, Nobre CA, Tomasella J, Oyama MD, De Oliveira GS, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516

    Article  Google Scholar 

  33. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703

    Article  Google Scholar 

  34. McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales Proceedings of the 8th conference of applied climatology, 17–22 Jan 1993. American Meteorological Society, Anaheim, pp 179–184

    Google Scholar 

  35. Mehran A, AghaKouchak A (2013) Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol Process. doi:10.1002/hyp.9779

  36. Mo K (2008) Model based drought indices over the United States. J Hydrometeorol 9:1212–1230

    Article  Google Scholar 

  37. Robock A, Luo L, Wood E, Wen F, Mitchell K, Houser P, Schaake J, Lohmann D, Cosgrove B, Sheffield J, Duan Q, Higgins R, Pinker R, Tarpley J, Basara J, Crawford K (2004) Evaluation of the north American land data assimilation system over the southern Great Plains during the warm season. J Geophy Res: 109

  38. Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth 34(10–12):596–605

    Article  Google Scholar 

  39. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Article  Google Scholar 

  40. Sheffield J, Goteti G, Wen F, Wood E (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos 109(D24)

  41. Sheffield J, Wood E, Roderick M (2012) Little change in global drought over the past 60 years. Nat 491(7424):435–438

    Article  Google Scholar 

  42. Shiau J (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  43. Shukla S, Wood A (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):l02405

    Article  Google Scholar 

  44. Sorooshian S, Hsu K, Gao X, Gupta H, Imam B, Braithwaite D (2000) Evolution of the PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  45. Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bull Am Meteorol Soc 92(10):1353–1357

    Article  Google Scholar 

  46. Tian Y, Peters-Lidard C, Eylander J, Joyce R, Huffman G, Adler R, Hsu K, Turk F, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101

    Article  Google Scholar 

  47. Trenberth K (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang 42(1):327–339

    Article  Google Scholar 

  48. Trenberth K (2001) Climate variability and global warming. Sci 293(5527):48–49

    Article  Google Scholar 

  49. Turk FJ, Arkin P, Ebert EE, Sapiano MRP (2008) Evaluating high-resolution precipitation products. Bull Am Meteorol Soc 89(12):1911–1916

    Article  Google Scholar 

  50. Wang D, Hejazi M, Cai X, Valocchi AJ (2011) Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour Res 47:W09527

    Google Scholar 

  51. Wardlow B, Anderson M, Verdin J (2012) Remote sensing of drought. CRC, Boca Raton

    Google Scholar 

  52. WCRP (2010) A WCRP white paper on drought predictability and prediction in a changing climate: assessing current predictive knowledge and capabilities, user requirements and research priorities. Tech rep, World Climate Research Programme

  53. Wehner M (2012) Methods of projecting future changes in extremes. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate: detection, analysis and uncertainty. Springer, New York. doi:10.1007/978-94-007-4479-08

    Google Scholar 

  54. Wilhite D, Glantz M (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120

    Article  Google Scholar 

  55. WMO (2009) Inter-regional workshop on indices and early warning systems for drought. Lincoln, Nebraska, USA, 8–11 December 2009, World Meteorological Organization

  56. Yoon J-H, Mo K, Wood EF (2012) Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J Hydrometeorol 13(2):463–482

    Article  Google Scholar 

  57. Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1):254–271

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and reviewers for their thoughtful comments and suggestions on an earlier draft of this paper. This study is supported by the National Science Foundation (NSF, award no. EAR-1316536) and the United States Bureau of Reclamation (USBR, award no. R11AP81451).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir AghaKouchak.

Appendix

Appendix

Appendix Estimating the Standardized Precipitation Index (SPI) involves describing frequency distribution of precipitation using a gamma probability density function:

$$ g(x)= \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{\frac{-x}{\beta}} $$
(5)

where α and β are the shape and scale parameters, respectively. In Eq. 5, x denotes positive precipitation amounts and Γ(α) is the gamma function. The parameters α and β can be estimated using the maximum likelihood method as (Edwards 1997):

$$ \alpha=\frac{1}{4\left(ln(\overline{x})-\frac{\Sigma ln(x)}{n}\right)} \left(1+\sqrt{1+\frac{4\left(ln(\overline{x})-\frac{\Sigma ln(x)}{n}\right)}{3}}\right) $$
(6)

and

$$ \beta=\frac{\overline{x}}{\alpha} $$
(7)

where n is the number of observations. The estimated parameters will then be used to derive the cumulative probability of observed precipitation values for the given month and time scale (e.g., 6 months) over each pixel:

$$ G(x)= \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \int_{0}^{x} x^{\alpha-1}e^{\frac{-x}{\beta}} dx $$
(8)

Assuming \(t=\frac {x}{\beta }\), Eq. 8 reduces to the so-called incomplete cumulative gamma distribution function (Edwards 1997):

$$ G(x)= \frac{1}{\Gamma(\alpha)} \int_{0}^{x} t^{\alpha-1}e^{-t} dt $$
(9)

The above equation is not valid for x = 0 (zero precipitation values). To account for zeros, the complete cumulative probability distribution, H(x), can be written as:

$$ H(x)= q + (1-q)G(x) $$
(10)

where q and 1 − q denote the probabilities of zero and nonzero precipitations, respectively. The SPI is then derived by transforming the cumulative probability (Eq. 10) to the standard normal distribution with a mean of 0 and variance of 1 (McKee et al. 1993).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Damberg, L., AghaKouchak, A. Global trends and patterns of drought from space. Theor Appl Climatol 117, 441–448 (2014). https://doi.org/10.1007/s00704-013-1019-5

Download citation

Keywords

  • Northern Hemisphere
  • Southern Hemisphere
  • Standardize Precipitation Index
  • Extreme Drought
  • Palmer Drought Severity Index