Skip to main content
Log in

Spatio-temporal patterns of precipitation in Serbia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The monthly precipitation data from 29 synoptic stations for the period 1946–2012 were analyzed using a number of different multivariate statistical analysis methods to investigate the spatial variability and temporal patterns of precipitation across Serbia. R-mode principal component analysis was used to study the spatial variability of the precipitation. Three distinct sub-regions were identified by applying the agglomerative hierarchical cluster analysis to the two component scores: C1 includes the north and the northeast part of Serbia, while C2 includes the western part of Central Serbia and southwestern part of Serbia and C3 includes central, east, south and southeast part of Serbia. The analysis of the identified sub-regions indicated that the monthly and seasonal precipitation in sub-region C2 had the values above average, while C1 and C3 had the precipitation values under average. The analysis of the linear trend of the mean annual precipitation showed an increasing trend for the stations located in Serbia and three sub-regions. From the result of this analysis, one can plan land use, water resources and agricultural production in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comp Stat 2:433–459

    Article  Google Scholar 

  • Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 541–580

    Google Scholar 

  • Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York

    Google Scholar 

  • Apaydin H, Erpul G, Bayramin I, Gabriels D (2006) Evaluation of indices for characterizing the distribution and concentration of precipitation: a case for the region of Southeastern Anatolia Project, Turkey. J Hydrol 328:726–732

    Article  Google Scholar 

  • Baigorria GA, Jones JW, O'brien JJO (2007) Understanding spatial rainfall variability in southeast USA at different timescales. Int J Climatol 27:749–760

    Article  Google Scholar 

  • Bajat B, Pejovic M, Lukovic J, Manojlovic P, Ducic V, Mustafic S (2013) Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor Appl Climatol 112:1–13

    Article  Google Scholar 

  • Bartlett MS (1954) A note on the multiplying factors for various χ 2 approximations. J R Stat Soc B 16:296–298

    Google Scholar 

  • Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003) Spatial variability of drought: an analysis of the SPI in Sicily. Water Resour Manage 17:273–296

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Jiang JM, Sutera A (2004) Spatio-temporal variability of dry and wet periods in eastern China. Theor Appl Climatol 79:81–91

    Article  Google Scholar 

  • Bunkers MJ, Miller JR, DeGaetano AT (1996) Definition of climate regions in the Northern plains using and objective cluster modification technique. J Clim 9:130–146

    Article  Google Scholar 

  • Cattell RB (1966) The Scree test for the number of factors. Multivar Behav Res 1:245–276

    Article  Google Scholar 

  • De Luis M, Gonzalez-Hidalgo CJ, Brunetti M, Longares LA (2011) Precipitation concentration changes in Spain 1946–2005. Nat Hazards Earth Syst Sci 11:1259–1265

    Article  Google Scholar 

  • Demsar U, Harris P, Brunsdon C, Fotheringham AS, McLoone S (2013) Principal component analysis on spatial data: an overview. Ann Assoc Am Geogr 103:106–128

    Article  Google Scholar 

  • Desa MN, Niemicynowicz MJ (1996) Temporal and spatial characteristics of rainfall in Kuala Lampur, Malaysia. Atmos Res 42:263–277

    Article  Google Scholar 

  • Dinpashoha Y, Fakheri-Farda A, Moghaddamb M, Jahanbakhshc S, Mirnia M (2004) Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods. J Hydrol 297:109–123

    Article  Google Scholar 

  • Ekström M, Fowler HJ, Kilsby CG, Jones PD (2005) New estimates of future changes in extreme rainfall across the UK using regional climate model integrations: 1. Future estimates and use in impact studies. J Hydrol 300:234–251

    Article  Google Scholar 

  • Everitt BS (1993) Cluster analysis. Edward Arnold, London

    Google Scholar 

  • Gocic M, Trajkovic S (2013a) Analysis of precipitation and drought data in Serbia over the period 1980–2010. J Hydrol 494:32–42

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013b) Analysis of changes in meteorological variables using Mann–Kendall and Sen's slope estimator statistical tests in Serbia. Global Planet Chang 100:172–182

    Article  Google Scholar 

  • Gonzalez-Hildago JC, De Luís M, Raventos S, Sanchez JR (2001) Spatial distribution of seasonal rainfall trends in a western Mediterranean area. Int J Climatol 21:843–860

    Article  Google Scholar 

  • Gordon AD (1999) Classification. Chapman & Hall/CRC, London

    Google Scholar 

  • Gorsuch RL (1983) Factor analysis. Lawrence Erlbaum Associates, Philadelphia

    Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer-Verlag, New York

    Google Scholar 

  • Kaiser HF (1970) A second generation Little Jiffy. Psychometrika 35:401–415

    Article  Google Scholar 

  • Kalkestein LS, Tan G, Skindlov JA (1987) An evaluation of three clustering procedures for use in synoptic climatological classification. J Clim 26:717–730

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  • Kendall MG, Stuart A (1968) The advanced theory of statistics: design and analysis, and time-series. Charles Griffin & Company Limited, London

    Google Scholar 

  • Kjellström E (2004) Recent and future signatures of climate change in Europe. Ambio 23:193–198

    Google Scholar 

  • Martins DS, Raziei T, Paulo AA, Pereira LS (2012) Spatial and temporal variability of precipitation and drought in Portugal. Nat Hazards Earth Syst Sci 12:1493–1501

    Article  Google Scholar 

  • Ngongondo C, Xu CY, Gottschalk L, Alemaw B (2011) Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theor Appl Climatol 106:79–93

    Article  Google Scholar 

  • Norrant C, Douguédroit A (2006) Monthly and daily precipitation trends in the Mediterranean. Theor Appl Climatol 83:89–106

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Oliver JE (1980) Monthly precipitation distribution: a comparative index. Prof Geogr 32:300–309

    Article  Google Scholar 

  • Pavlovic Berdon N (2012) The impact of Arctic and North Atlantic oscillation on temperature and precipitation anomalies in Serbia. Geogr Pannon 16:44–55

    Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag Ser 2:559–572

    Article  Google Scholar 

  • Philandras CM, Nastos PT, Kapsomenakis J, Douvis KC, Tselioudis G, Zerefos CS (2011) Long term precipitation trends and variability within the Mediterranean region. Nat Hazards Earth Syst Sci 11:3235–3250

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2004) European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Clim Dynam 22:13–31

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS (2008) A precipitation-based regionalization for Western Iran and regional drought variability. Hydrol Earth Syst Sc 12:1309–1321

    Article  Google Scholar 

  • Rencher AC (2002) Methods of multivariate analysis. Wiley, New York

    Book  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Rossel F, Garbrechtrt J (2001) Spatial variability and downscaling of precipitation. Phys Chem Earth Pt B 26:863–867

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: 23rd National conference ACM, ACM:517–524

  • Singh CV (2006) Pattern characteristics of Indian monsoon rainfall using principal component analysis (PCA). Atmos Res 79:317–326

    Article  Google Scholar 

  • Stricevic R, Djurovic N (2013) Determination of spatiotemporal distribution of agricultural drought in Central Serbia (Sumadija). Sci Res Essays 8:438–446

    Google Scholar 

  • Tomozeiu R, Lazzeri M, Cacciamani C (2002) Precipitation fluctuations during the winter season from 1960 to 1995 over Emilia-Romagna, Italy. Theor Appl Climatol 72:221–229

    Article  Google Scholar 

  • Tosic I (2004) Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theor Appl Climatol 77:47–56

    Article  Google Scholar 

  • Tosic I, Unkasevic M (2005) Analysis of precipitation series for Belgrade. Theor Appl Climatol 80:67–77

    Article  Google Scholar 

  • Tosic I, Unkasevic M (2013) Extreme daily precipitation in Belgrade and their links with the prevailing directions of the air trajectories. Theor Appl Climatol 111:97–107

    Article  Google Scholar 

  • Unkasevic M, Tosic I (2011) A statistical analysis of the daily precipitation over Serbia: trends and indices. Theor Appl Climatol 106:69–78

    Article  Google Scholar 

  • Unkasevic M, Tosic I, Vujovic D (2004) Variability and probability of annual and extreme precipitation over Serbia and Montenegro. Theor Appl Climatol 79:103–109

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

Download references

Acknowledgment

The study is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grant No. TR37003). We thank two anonymous referees for valuable comments and constructive suggestions that helped improve the final version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Gocic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gocic, M., Trajkovic, S. Spatio-temporal patterns of precipitation in Serbia. Theor Appl Climatol 117, 419–431 (2014). https://doi.org/10.1007/s00704-013-1017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1017-7

Keywords

Navigation