Projecting future drought in Mediterranean forests: bias correction of climate models matters!

Abstract

Global and regional climate models (GCM and RCM) are generally biased and cannot be used as forcing variables in ecological impact models without some form of prior bias correction. In this study, we investigated the influence of the bias correction method on drought projections in Mediterranean forests in southern France for the end of the twenty-first century (2071–2100). We used a water balance model with two different atmospheric climate forcings built from the same RCM simulations but using two different correction methods (quantile mapping or anomaly method). Drought, defined here as periods when vegetation functioning is affected by water deficit, was described in terms of intensity, duration and timing. Our results showed that the choice of the bias correction method had little effects on temperature and global radiation projections. However, although both methods led to similar predictions of precipitation amount, they induced strong differences in their temporal distribution, especially during summer. These differences were amplified when the climatic data were used to force the water balance model. On average, the choice of bias correction leads to 45 % uncertainty in the predicted anomalies in drought intensity along with discrepancies in the spatial pattern of the predicted changes and changes in the year-to-year variability in drought characteristics. We conclude that the choice of a bias correction method might have a significant impact on the projections of forest response to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anagnostopoulos GG, Koutsoyiannis D, Christofides A et al (2010) A comparison of local and aggregated climate model outputs with observed data. Hydrol Sci J 55(7):1094–1110. doi:10.1080/02626667.2010.513518

    Article  Google Scholar 

  2. Anderegg LDL, Anderegg WRL, Abatzoglou J et al (2013) Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA. Glob Chang Biol 19(5):1526–1537. doi:10.1111/gcb.12146

    Article  Google Scholar 

  3. Austin M, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8. doi:10.1111/j.1365-2699.2010.02416.x

    Article  Google Scholar 

  4. Barkhordarian A, Storch H, Bhend J (2012) The expectation of future precipitation change over the Mediterranean region is different from what we observe. Clim Dyn 40:225–244. doi:10.1007/s00382-012-1497-7

    Article  Google Scholar 

  5. Bartolini G, Di Stefano V, Maracchi G, Orlandini S (2012) Mediterranean warming is especially due to summer season. Evidences from Tuscany (central Italy). Theor Appl Climatol 107(1–2):279–295. doi:10.1007/s00704-011-0481-1

    Article  Google Scholar 

  6. Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146. doi:10.1111/j.1461-0248.2008.01231.x

    Google Scholar 

  7. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Chang 2:433–436. doi:10.1038/nclimate1454

    Article  Google Scholar 

  8. Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. doi:10.1002/joc

    Article  Google Scholar 

  9. Bonan G (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121

    Article  Google Scholar 

  10. Cheaib A, Badeau V, Boe J et al (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544. doi:10.1111/j.1461-0248.2012.01764.x

    Article  Google Scholar 

  11. Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.1038/nature11688

    Google Scholar 

  12. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35, L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  13. Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373. doi:10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  14. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  15. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  16. Habets F, Boone A, Champeaux JL et al (2008) The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J Geophys Res 113, D06113. doi:10.1029/2007JD008548

    Google Scholar 

  17. Hadjinicolaou P, Giannakopoulos C, Zerefos C et al (2011) Mid-21st century climate and weather extremes in Cyprus as projected by six regional climate models. Reg Environ Chang 11:441–457. doi:10.1007/s10113-010-0153-1

    Article  Google Scholar 

  18. Hansen JW, Challinor A, Ines A et al (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41. doi:10.3354/cr033027

    Article  Google Scholar 

  19. Hoff C, Rambal S (2003) An examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Ann For Sci 60:153–161. doi:10.1051/forest:2003008

    Article  Google Scholar 

  20. Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agric Forest Meteorol 138:44–53. doi:10.1016/j.agrformet.2006.03.009

    Article  Google Scholar 

  21. Intergovernmental Panel on Climate Change (2007) Climate change 2007: the fourth IPCC assessment report. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Krawchuk MA, Moritz MA, Parisien MA et al (2009) Global pyrogeography: the current and future distribution of wildfire. PloS ONE 4(4):e5102. doi:10.1371/journal.pone.0005102

    Article  Google Scholar 

  23. Limousin JM, Rambal S, Ourcival JM et al (2009) Long term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Chang Biol 15:2163–2175. doi:10.1111/j.1365-2486.2009.01852.x

    Article  Google Scholar 

  24. Luo Y, Melillo J, Niu S et al (2011) Coordinated approaches to quantify long–term ecosystem dynamics in response to global change. Glob Chang Biol 17(2):843–854. doi:10.1111/j.1365-2486.2010.02265.x

    Article  Google Scholar 

  25. Maraun D, Wetterhall F, Ireson AM et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  26. Martin-StPaul NK, Limousin JM, Vogt-Schilb H et al (2013) The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment. Glob Chang Biol. doi:10.1111/gcb.12215

    Google Scholar 

  27. Misson L, Rocheteau A, Rambal S et al (2010) Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Glob Chang Biol 16:2461–2475. doi:10.1111/j.1365-2486.2009.02121.x

    Google Scholar 

  28. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi:10.3354/cr031085

    Article  Google Scholar 

  29. Myers BJ (1988) Water stress integral: a link between short-term stress and long-term growth. Tree Physiol 4:315. doi:10.1093/treephys/4.4.315

    Article  Google Scholar 

  30. Önol BHM, Semazzi F (2009) Regionalization of climate change simulations over the Eastern Mediterranean. J Clim 22:1944–1961. doi:10.1175/2008JCLI1807.1

    Article  Google Scholar 

  31. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35, L14701. doi:10.1029/2008GL034026

    Article  Google Scholar 

  32. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  33. Quintana Seguí P, Ribes A, Martin E et al (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383:111–124. doi:10.1016/j.jhydrol.2009.09.050

    Article  Google Scholar 

  34. Quintana-Seguí P, Le Moigne P, Durand Y et al (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107. doi:10.1175/2007JAMC1636.1

    Article  Google Scholar 

  35. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/

  36. Rambal S, Ourcival JM, Joffre R et al (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Chang Biol 9:1813–1824. doi:10.1046/j.1529-8817.2003.00687.x

    Article  Google Scholar 

  37. Randin CF, Engler R, Normand S et al (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Chang Biol 15:1557–1569. doi:10.1111/j.1365-2486.2008.01766.x

    Article  Google Scholar 

  38. Rodriguez-Iturbe I, Porporato A, Laio F, Ridolfi L (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline. Adv Water Resour 24:695–705. doi:10.1016/S0309-1708(01)00004-5

    Article  Google Scholar 

  39. Ruffault J, Martin-StPaul N, Rambal S, Mouillot F (2013) Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim Chang 117:103–117. doi:10.1007/s10584-012-0559-5

    Article  Google Scholar 

  40. Sala A, Tenhunen JD (1996) Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric For Meteorol 78:203–222. doi:10.1038/19293

    Article  Google Scholar 

  41. Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  Google Scholar 

  42. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Chang 63:112–126. doi:10.1016/j.gloplacha.2007.10.003

    Article  Google Scholar 

  43. Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610. doi:10.1038/19293

    Article  Google Scholar 

  44. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027. doi:10.1111/j.1365-2486.2004.00859.x

    Article  Google Scholar 

  45. Vasiliades L, Loukas A, Patsonas G (2009) Evaluation of a statistical downscaling procedure for the estimation of climate change impacts on droughts. Nat Hazard Earth Syst Sci 9:879–894. doi:10.5194/nhess-9-879-2009

    Article  Google Scholar 

  46. Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during the second half of the twentieth century. Theor Appl Climatol 88:247–258. doi:10.1007/s00704-006-0236-6

    Article  Google Scholar 

  47. Welch BL (1947) The generalization of Student’s problem when several different population variances are involved. Biometrika 34(1/2):28–35

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the UE 7th FP Env.1.3.1.1 FUME “Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world”, grant agreement no. 243888. A doctoral research grant was provided to JR by the Languedoc-Roussillon region, the Centre National de la Recherche Scientifique, and the ANR project SCION (no. ANR-09-PEXT-006) and a postdoctoral grant to CD by the ANR project MESOEROS (grant agreement no. ANR-06-VULN-012). A postdoctoral grant to NKM-SP was provided by the HUMBOLDT project, which is part of the GIS Climate-Environment-Society consortium.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Julien Ruffault or Florent Mouillot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3665 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruffault, J., Martin-StPaul, N.K., Duffet, C. et al. Projecting future drought in Mediterranean forests: bias correction of climate models matters!. Theor Appl Climatol 117, 113–122 (2014). https://doi.org/10.1007/s00704-013-0992-z

Download citation

Keywords

  • Regional Climate Model
  • Bias Correction
  • Drought Index
  • Global Radiation
  • Soil Water Potential