Theoretical and Applied Climatology

, Volume 115, Issue 3–4, pp 427–440 | Cite as

Terrestrial satellite records for climate studies: how long is long enough? A test case for the Sahel

Original Paper

Abstract

Satellite-based observations provide a unique data record to study the Earth system. Recent efforts of the space agencies to reprocess the archives of satellite observations aim to provide Essential Climate Variable (ECV) data records for manifold applications in climate sciences. Varying lengths of a data record or gaps in a data time series are likely to affect the analysis results obtained from long-term satellite data records. The present paper provides a systematic assessment of the impact of variations in the observational record of terrestrial ECVs for selected climate applications like trend detection and the analysis of relationships between different ECVs. As an example, the Sahelian drought and the subsequent recovery in precipitation and vegetation will be analyzed in detail using observations of precipitation, surface albedo, vegetation index, as well as ocean indices. The paper provides a different perspective on the robustness of long-term satellite observations than previous studies. It shows in particular that the long-term significant trends in precipitation and vegetation dynamics are rather sensitive to the investigation period chosen and that small data gaps can already have a considerable influence on the analysis results. It is therefore a plea for continuous climate observations from space.

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4(6):1147–1167. doi:10.1175/1525-7541(2003)004<C1147:TVGPCP>2.0.CO;2 CrossRefGoogle Scholar
  2. Andersson A, Fennig K, Klepp C, Bakan S, Graßl H, Schulz J (2010) The Hamburg ocean atmosphere parameters and fluxes from satellite data HOAPS-3. Earth Syst Sci Data 2(2):215–234. doi:10.5194/essd-2-215-2010 CrossRefGoogle Scholar
  3. Anyamba A, Tucker C (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ 63(3):596–614. doi:10.1016/j.jaridenv.2005.03.007 CrossRefGoogle Scholar
  4. Beck HE, McVicar TR, van Dijk AI, Schellekens J, de Jeu RA, Bruijnzeel LA (2011) Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115(10):2547–2563. doi:10.1016/j.rse.2011.05.012 CrossRefGoogle Scholar
  5. Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M (2013) Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst . doi:10.1029/2012MS000169
  6. Brown ME, de Beurs K, Vrieling A (2010) The response of African land surface phenology to large scale climate oscillations. Remote Sens Environ 114(10):2286–2296. doi:10.1016/j.rse.2010.05.005 CrossRefGoogle Scholar
  7. Charney BJG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorol Soc 101: 193–202. doi:10.1002/qj.49710142802. March 1974CrossRefGoogle Scholar
  8. Dorigo W, de Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39(18):L18405. doi:10.1029/2012GL052988 CrossRefGoogle Scholar
  9. Fensholt R, Proud SR (2012) Evaluation of Earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.1016/j.rse.2011.12.015 CrossRefGoogle Scholar
  10. Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian rain-use efficiency using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115(2):438–451. doi:10.1016/j.rse.2010.09.014 CrossRefGoogle Scholar
  11. Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017 CrossRefGoogle Scholar
  12. Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Global Planet Chang 64(3–4):119–128. doi:10.1016/j.gloplacha.2008.05.004 CrossRefGoogle Scholar
  13. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6):D06104. doi:10.1029/2007JD008972 Google Scholar
  14. Goward SN, Dye DG, Turner S, Yang J (1993) Objective assessment of the NOAA Global Vegetation Index data product. Int J Rem Sens 14(18):3365–3394CrossRefGoogle Scholar
  15. Hagemann S, Loew A, Andersson A (2013) Combined evaluation of MPI-ESM land surface water and energy fluxes. J Adv Model Earth Syst. doi:10.1029/2012MS000173
  16. Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33(3):1–4. doi:10.1029/2005GL025127 CrossRefGoogle Scholar
  17. Hickler T, Eklundh L, Seaquist JW, Smith B, Ardö J, Olsson L, Sykes MT, Sjöström M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32(21). doi:10.1029/2005GL024370
  18. Hollmann R, Merchant C, Saunders R, Downy C, Buchwitz M, Cazenave A, Chuvieco E, Defourny P, de Leeuw G, Forsberg R, Holzer-Popp T, Paul F, Sandven S, Sathyendranath S, van Roozendael W, Wagner M (2013) The ESA climate change initiative: satellite data records for essential climate variables. Bull Amer Meteor Soc. Available at: http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-11-00254.1. Accessed 19 Mar 2013Google Scholar
  19. Huber S, Fensholt R (2011) Analysis of teleconnections between AVHRR-based sea surface temperature and vegetation productivity in the semi-arid Sahel. Remote Sens Environ 115(12):3276–3285. doi:10.1016/j.rse.2011.07.011 CrossRefGoogle Scholar
  20. Jong R, Verbesselt J, Schaepman ME, Bruin S, de Jong R, de Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob Chang Biol 18(2):642–655. doi:10.1111/j.1365-2486.2011.02578.x CrossRefGoogle Scholar
  21. Knapp KR, Ansari S, Bain CL, Bourassa MA, Dickinson MJ, Funk C, Helms CN, Hennon CC, Holmes CD, Huffman GJ, Kossin JP, Lee H-T, Loew A, Magnusdottir G (2011) Globally gridded satellite observations for climate studies. Bull Am Meteorol Soc 92(7):893–907. doi:10.1175/2011BAMS3039.1 CrossRefGoogle Scholar
  22. Kucera PA, Ebert EE, Turk FJ, Levizzani V, Kirschbaum D, Tapiador FJ, Loew A, Borsche M (2012) Precipitation from Space: advancing Earth System Science. Bull Amer Meteor Soc 120821055338005. doi:10.1175/BAMS-D-1100171.1
  23. Liu Y, Dorigo W, Parinussa R, de Jeu R, Wagner W, McCabe M, Evans J, van Dijk A (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. doi:10.1016/j.rse.2012.03.014 CrossRefGoogle Scholar
  24. Loew A, Govaerts Y (2010) Towards multidecadal consistent meteosat surface albedo time series. Remote Sens 2(4):957–967. doi:10.3390/rs2040957 CrossRefGoogle Scholar
  25. Loew A, Holmes T, de Jeu R (2009) The European heat wave 2003: early indicators from multisensoral microwave remote sensing? J Geophys Res 114(D5):1–14. doi:10.1029/2008JD010533 Google Scholar
  26. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  27. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 Multimodel Dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  28. Ohring G, Wielicki B, Spencer R, Emery B, Datla R (2005) Satellite instrument calibration for measuring global climate change: report of a workshop. Bull Am Meteorol Soc 86(9):1303–1313. doi:10.1175/BAMS-86-9-1303 CrossRefGoogle Scholar
  29. Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63(3):556–566. doi:10.1016/j.jaridenv.2005.03.008 CrossRefGoogle Scholar
  30. Ottermann J (1974) Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science 186(8):4163. doi:10.1126/science.186.4163.531 Google Scholar
  31. Pinty B, Roveda F, Verstraete M, Gobron N, Govaerts Y, Martonchik J, Diner D, Kahn R (2000) Surface albedo retrieval from Meteosat: 1. Theory. J Geophys Res 105(D14):18099–18112CrossRefGoogle Scholar
  32. Posselt R, Mueller R, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198. doi:10.1016/j.rse.2011.11.016 CrossRefGoogle Scholar
  33. Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87(12):1739–1746. doi:10.1175/BAMS-87-12-1739 CrossRefGoogle Scholar
  34. Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Chauvin F, Fontaine B, García-Serrano J, Gervois S, Joly M, Polo I, Ruti P, Roucou P, Voldoire A (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74. doi:10.1002/asl.308 CrossRefGoogle Scholar
  35. Schulz J, Albert P, Behr HD, Caprion D, Deneke H, Dewitte S, Dürr B, Fuchs P, Gratzki A, Hechler P, Hollmann R, Johnston S, Karlsson KG, Manninen T, Müller R, Reuter M, Riihelä A, Roebeling R, Selbach N, Tetzlaff A, Thomas W, Werscheck M, Wolters E, Zelenka A (2009) Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF). Atmos Sci Lett 9(5):1687–1709. doi:10.5194/acp-9-1687-2009 Google Scholar
  36. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1389–1379CrossRefGoogle Scholar
  37. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Nederl Akad Wetensch Proc 53:386–392, 521–525 and 1397–1412Google Scholar
  38. Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Rem Sens 26(20):4485–4498CrossRefGoogle Scholar
  39. Vamborg FSE, Brovkin V, Claussen M (2011) The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene. Clim Past 7(1):117–131. doi:10.5194/cp-7-117-2011 CrossRefGoogle Scholar
  40. Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ. doi:10.1016/j.rse.2010.08.003
  41. WMO (2011) Systematic observation requirements for satellite-based data products for climate modelling. Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update) GCOS-154Google Scholar
  42. Wolter K, Timlin M (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53:315–324CrossRefGoogle Scholar
  43. Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Climatol 26(6):743–769. doi:10.1002/joc.1280 CrossRefGoogle Scholar
  44. Zeng N, Yoon J (2009) Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys Res Lett 36(17). doi:10.1029/2009GL039699

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations