Skip to main content

Advertisement

Log in

Terrestrial satellite records for climate studies: how long is long enough? A test case for the Sahel

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Satellite-based observations provide a unique data record to study the Earth system. Recent efforts of the space agencies to reprocess the archives of satellite observations aim to provide Essential Climate Variable (ECV) data records for manifold applications in climate sciences. Varying lengths of a data record or gaps in a data time series are likely to affect the analysis results obtained from long-term satellite data records. The present paper provides a systematic assessment of the impact of variations in the observational record of terrestrial ECVs for selected climate applications like trend detection and the analysis of relationships between different ECVs. As an example, the Sahelian drought and the subsequent recovery in precipitation and vegetation will be analyzed in detail using observations of precipitation, surface albedo, vegetation index, as well as ocean indices. The paper provides a different perspective on the robustness of long-term satellite observations than previous studies. It shows in particular that the long-term significant trends in precipitation and vegetation dynamics are rather sensitive to the investigation period chosen and that small data gaps can already have a considerable influence on the analysis results. It is therefore a plea for continuous climate observations from space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4(6):1147–1167. doi:10.1175/1525-7541(2003)004<C1147:TVGPCP>2.0.CO;2

    Article  Google Scholar 

  • Andersson A, Fennig K, Klepp C, Bakan S, Graßl H, Schulz J (2010) The Hamburg ocean atmosphere parameters and fluxes from satellite data HOAPS-3. Earth Syst Sci Data 2(2):215–234. doi:10.5194/essd-2-215-2010

    Article  Google Scholar 

  • Anyamba A, Tucker C (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ 63(3):596–614. doi:10.1016/j.jaridenv.2005.03.007

    Article  Google Scholar 

  • Beck HE, McVicar TR, van Dijk AI, Schellekens J, de Jeu RA, Bruijnzeel LA (2011) Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115(10):2547–2563. doi:10.1016/j.rse.2011.05.012

    Article  Google Scholar 

  • Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M (2013) Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst . doi:10.1029/2012MS000169

  • Brown ME, de Beurs K, Vrieling A (2010) The response of African land surface phenology to large scale climate oscillations. Remote Sens Environ 114(10):2286–2296. doi:10.1016/j.rse.2010.05.005

    Article  Google Scholar 

  • Charney BJG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorol Soc 101: 193–202. doi:10.1002/qj.49710142802. March 1974

    Article  Google Scholar 

  • Dorigo W, de Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39(18):L18405. doi:10.1029/2012GL052988

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of Earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.1016/j.rse.2011.12.015

    Article  Google Scholar 

  • Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian rain-use efficiency using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115(2):438–451. doi:10.1016/j.rse.2010.09.014

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

    Article  Google Scholar 

  • Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Global Planet Chang 64(3–4):119–128. doi:10.1016/j.gloplacha.2008.05.004

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6):D06104. doi:10.1029/2007JD008972

    Google Scholar 

  • Goward SN, Dye DG, Turner S, Yang J (1993) Objective assessment of the NOAA Global Vegetation Index data product. Int J Rem Sens 14(18):3365–3394

    Article  Google Scholar 

  • Hagemann S, Loew A, Andersson A (2013) Combined evaluation of MPI-ESM land surface water and energy fluxes. J Adv Model Earth Syst. doi:10.1029/2012MS000173

  • Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33(3):1–4. doi:10.1029/2005GL025127

    Article  Google Scholar 

  • Hickler T, Eklundh L, Seaquist JW, Smith B, Ardö J, Olsson L, Sykes MT, Sjöström M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32(21). doi:10.1029/2005GL024370

  • Hollmann R, Merchant C, Saunders R, Downy C, Buchwitz M, Cazenave A, Chuvieco E, Defourny P, de Leeuw G, Forsberg R, Holzer-Popp T, Paul F, Sandven S, Sathyendranath S, van Roozendael W, Wagner M (2013) The ESA climate change initiative: satellite data records for essential climate variables. Bull Amer Meteor Soc. Available at: http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-11-00254.1. Accessed 19 Mar 2013

  • Huber S, Fensholt R (2011) Analysis of teleconnections between AVHRR-based sea surface temperature and vegetation productivity in the semi-arid Sahel. Remote Sens Environ 115(12):3276–3285. doi:10.1016/j.rse.2011.07.011

    Article  Google Scholar 

  • Jong R, Verbesselt J, Schaepman ME, Bruin S, de Jong R, de Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob Chang Biol 18(2):642–655. doi:10.1111/j.1365-2486.2011.02578.x

    Article  Google Scholar 

  • Knapp KR, Ansari S, Bain CL, Bourassa MA, Dickinson MJ, Funk C, Helms CN, Hennon CC, Holmes CD, Huffman GJ, Kossin JP, Lee H-T, Loew A, Magnusdottir G (2011) Globally gridded satellite observations for climate studies. Bull Am Meteorol Soc 92(7):893–907. doi:10.1175/2011BAMS3039.1

    Article  Google Scholar 

  • Kucera PA, Ebert EE, Turk FJ, Levizzani V, Kirschbaum D, Tapiador FJ, Loew A, Borsche M (2012) Precipitation from Space: advancing Earth System Science. Bull Amer Meteor Soc 120821055338005. doi:10.1175/BAMS-D-1100171.1

  • Liu Y, Dorigo W, Parinussa R, de Jeu R, Wagner W, McCabe M, Evans J, van Dijk A (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. doi:10.1016/j.rse.2012.03.014

    Article  Google Scholar 

  • Loew A, Govaerts Y (2010) Towards multidecadal consistent meteosat surface albedo time series. Remote Sens 2(4):957–967. doi:10.3390/rs2040957

    Article  Google Scholar 

  • Loew A, Holmes T, de Jeu R (2009) The European heat wave 2003: early indicators from multisensoral microwave remote sensing? J Geophys Res 114(D5):1–14. doi:10.1029/2008JD010533

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 Multimodel Dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Ohring G, Wielicki B, Spencer R, Emery B, Datla R (2005) Satellite instrument calibration for measuring global climate change: report of a workshop. Bull Am Meteorol Soc 86(9):1303–1313. doi:10.1175/BAMS-86-9-1303

    Article  Google Scholar 

  • Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63(3):556–566. doi:10.1016/j.jaridenv.2005.03.008

    Article  Google Scholar 

  • Ottermann J (1974) Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science 186(8):4163. doi:10.1126/science.186.4163.531

    Google Scholar 

  • Pinty B, Roveda F, Verstraete M, Gobron N, Govaerts Y, Martonchik J, Diner D, Kahn R (2000) Surface albedo retrieval from Meteosat: 1. Theory. J Geophys Res 105(D14):18099–18112

    Article  Google Scholar 

  • Posselt R, Mueller R, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198. doi:10.1016/j.rse.2011.11.016

    Article  Google Scholar 

  • Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87(12):1739–1746. doi:10.1175/BAMS-87-12-1739

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Chauvin F, Fontaine B, García-Serrano J, Gervois S, Joly M, Polo I, Ruti P, Roucou P, Voldoire A (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74. doi:10.1002/asl.308

    Article  Google Scholar 

  • Schulz J, Albert P, Behr HD, Caprion D, Deneke H, Dewitte S, Dürr B, Fuchs P, Gratzki A, Hechler P, Hollmann R, Johnston S, Karlsson KG, Manninen T, Müller R, Reuter M, Riihelä A, Roebeling R, Selbach N, Tetzlaff A, Thomas W, Werscheck M, Wolters E, Zelenka A (2009) Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF). Atmos Sci Lett 9(5):1687–1709. doi:10.5194/acp-9-1687-2009

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1389–1379

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Nederl Akad Wetensch Proc 53:386–392, 521–525 and 1397–1412

    Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Rem Sens 26(20):4485–4498

    Article  Google Scholar 

  • Vamborg FSE, Brovkin V, Claussen M (2011) The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene. Clim Past 7(1):117–131. doi:10.5194/cp-7-117-2011

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ. doi:10.1016/j.rse.2010.08.003

  • WMO (2011) Systematic observation requirements for satellite-based data products for climate modelling. Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update) GCOS-154

  • Wolter K, Timlin M (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53:315–324

    Article  Google Scholar 

  • Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Climatol 26(6):743–769. doi:10.1002/joc.1280

    Article  Google Scholar 

  • Zeng N, Yoon J (2009) Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys Res Lett 36(17). doi:10.1029/2009GL039699

Download references

Acknowledgments

Meteosat surface albedo data were provided by EUMETSAT and GIMMS NDVI data were obtained from the Global Landcover Facility, University of Maryland. The GPCP combined precipitation data were provided by the Laboratory for Atmospheres of NASA/Goddard Space Flight Center, which develops and computes the dataset as a contribution to the GEWEX Global Precipitation Climatology Project. The authors thank two anonymous reviewers for their constructive comments on the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Loew.

Additional information

The author was supported through the Cluster of Excellence CliSAP (EXC177), University of Hamburg, funded through the German Science Foundation (DFG) and the ESA CCI program (nr.4000101361).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loew, A. Terrestrial satellite records for climate studies: how long is long enough? A test case for the Sahel. Theor Appl Climatol 115, 427–440 (2014). https://doi.org/10.1007/s00704-013-0880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0880-6

Keywords

Navigation