The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg

Abstract

The climate tourism potential of a region can be described by methods used in human biometeorology and applied climatology. Frequency analyses based on complex thermal bioclimatic indices (e.g. physiologically equivalent temperature) and diagrams of precipitation patterns based on thresholds offer new approaches of visualisation. An integral approach for tourism climatologic analyses is provided by the climate–tourism/transfer–information–scheme that also bases on frequency distributions of relevant factors and parameters which are important for a destination. The knowledge about the vertical variability of tourism climatologic factors is of high importance because of the several kinds of tourism activities affected by weather. The same holds for a quantification of extreme events like heat waves because of their possible effects on health and recreation over a year's course. The results show that the vertical gradient of bioclimatic and tourism-related parameters can be of value when developing strategies of adaption to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Amelung B, Blazejczyk K, Matzarakis A (eds) (2007) Climate change and tourism: assessment and coping strategies. Maastricht–Warsaw–Freiburg, ISBN: 978-00-023716-4

  2. Barbiere EB (1981) O Fator Climático nos Sistemas Territoriais de Recreação. Revista brasileira de geographia XLIII(2):145–265

    Google Scholar 

  3. Bartels C, Barth M, Burandt S, Carstensen I, Endler C, Kreilkamp E, Matzarakis A, Möller A, Schulz S (2009) Sich mit dem Klima wandeln! Ein Tourismus-Klimafahrplan für Tourismusdestinationen. Herausgeber: Forschungsprojekt KUNTIKUM—Klimatrends und nachhaltige Tourismusentwicklung in Küsten- und Mittelgebirgsregionen. Leuphana Universität Lüneburg und Albert–Ludwigs-Universität Freiburg

  4. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcing. Clim Change 36:281–300

    Article  Google Scholar 

  5. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  6. Besancenot J-P (1989) Climat et tourisme. Masson: Collection Géographie, Paris, ISBN 2 225 818 169

    Google Scholar 

  7. Çalışkan O, Çiçek I, Matzarakis A (2011) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107(3–4):417–425

    Google Scholar 

  8. de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeor 48:45–54

    Article  Google Scholar 

  9. de Freitas CR, Scott D, McBoyle G (2008) A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol 52:399–407

    Article  Google Scholar 

  10. Endler C, Matzarakis A (2011a) Climatic and tourism related changes in the Black Forest: winter season. Int J Biometeorol 55:339–351

    Article  Google Scholar 

  11. Endler C, Matzarakis A (2011b) Analysis of high resolution simulations for the Black Forest region from a point of view of tourism climatology—a comparison between two regional climate models (REMO and CLM). Theor Appl Climatol 103:427–440

    Article  Google Scholar 

  12. Endler C, Matzarakis A (2011c) Climate and tourism in the Black Forest during the warm season. Int J Biometeorol 55:173–186

    Article  Google Scholar 

  13. Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54:45–46

    Article  Google Scholar 

  14. Fanger PO (1972) Thermal comfort. McGraw Hill, New York

    Google Scholar 

  15. Fleischhacker V, Formayer H, Seisser O, Wolf-Eberl S, Kromp-Kolb H (2009) Auswirkungen des Klimawandels auf das künftige Reiseverhalten im österreichischen Tourismus. Am Beispiel einer repräsentativen Befragung der österreichischen Urlaubsreisenden. Forschungsbericht im Auftrag des Bundesministeriums für Wirtschaft, Familie und Jugend

  16. Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response of the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  17. Gates AD (1975) Le climat des Maritimes en fonction du tourisme et des loisirs de plein air. Environment Canada, Toronto, p 135

    Google Scholar 

  18. Gössling S, Hall CM (2006) Uncertainties in predicting tourist travel flows based on models. Clim Chang 79(3–4):163–173, Editorial Essay

    Article  Google Scholar 

  19. Gössling S, Hall CM, Peeters P, Scott D (2010) The future of tourism: a climate change mitigation perspective. Tour Recreat Res 35(2):119–130

    Google Scholar 

  20. Hall CM (2008) Tourism and climate change: knowledge gaps and issues. Tour Recreat Res 33:339–350

    Google Scholar 

  21. Hall CM (2010) Tourism and biodiversity: more significant than climate change? J Herit Tour 5(4):253–266

    Article  Google Scholar 

  22. Hall CM, Higham J (eds) (2005) Tourism, recreation and climate change. Aspects in tourism. Channel View, Claverdon

    Google Scholar 

  23. Höppe P (1993) Heat balance modelling. Experientia 49:741–746

    Article  Google Scholar 

  24. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  25. Jopp R, DeLacy T, Mair J (2010) Developing a framework for regional destination adaptation to climate change. Curr Issues Tour 13(6):591–605

    Article  Google Scholar 

  26. KLIWA (2006) Regionale Klimaszenarien für Süddeutschland—Abschätzung der Auswirkung auf den Wasserhaushalt. KLIWA Berichte, Heft, 9

    Google Scholar 

  27. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Article  Google Scholar 

  28. Matzarakis A (2006) Weather and climate related information for tourism. Tour Hosp Plan Dev 3:99–115

    Article  Google Scholar 

  29. Matzarakis A (2007) Assessment method for climate and tourism based on daily data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology. Commission Climate, Tourism and Recreation, International Society of Biometeorology

    Google Scholar 

  30. Matzarakis A (2010) Climate change: temporal and spatial dimension of adaptation possibilities at regional and local scale. In: Schott C (ed) Tourism and the implications of climate change: issues and actions. Emerald Group Publishing. Bridging Tourism Theory and Practice, vol. 3, 237–259

  31. Matzarakis A, Amelung B (2008) Physiologically equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In: Thomson MC et al (eds) Seasonal forecasts, climatic change and human health. Advances in global change research 30. Springer, Berlin, pp 161–172

    Google Scholar 

  32. Matzarakis A, de Freitas CR (2001) Proceedings of the first international workshop on climate, tourism and recreation. International Society of Biometeorology, Commission on Climate Tourism and Recreation. December 2001. http://www.mif.uni-freiburg.de/isb

  33. Matzarakis A, Endler C (2010) Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol 54:479–483

    Article  Google Scholar 

  34. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsl 18:7–10

    Google Scholar 

  35. Matzarakis A, Tinz B (2008) Tourismus an der Küste sowie in Mittel und Hochgebirge: Gewinner und Verlierer. In: Lozán JZ, Graßl H, Jendritzky G, Karbe L, Reise L (eds) Warnsignal Klima: Gesundheitsrisiken Gefahren für Menschen, Tiere und Pflanzen. GEO/Wissenschaftliche Auswertungen, pp 247–252

  36. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeor 43:76–84

    Article  Google Scholar 

  37. Matzarakis A, de Freitas C, Scott D (eds) (2004) Advances in tourism climatology. Berichte des Meteorologischen Institutes der Universität Freiburg Nr. 12

  38. Matzarakis A, de Freitas CR, Scott D (eds) (2007a) Developments in tourism climatology. ISBN 978-3-00-024110-9

  39. Matzarakis A, Rutz F, Mayer H (2007b) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  40. Matzarakis A, Rudel E, Zygmuntowski M, Koch E (2010a) Bioclimatic maps for tourism purposes using GIS techniques. Phys Chem Earth 35:57–62

    Article  Google Scholar 

  41. Matzarakis A, Rutz F, Mayer H (2010b) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139

    Article  Google Scholar 

  42. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  43. Mieczkowski Z (1985) The tourism climate index: a method for evaluating world climates for tourism. Can Geogr 29:220–233

    Article  Google Scholar 

  44. OECD (2007) Climate change in the European Alps—adapting winter tourism and natural hazards management. Hrsg. von S. Agrawala (eds) OECD, Paris

  45. Sauter T, Weitzenkamp C, Schneider C (2010) Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. Int J Climatol 30:2330–2341

    Article  Google Scholar 

  46. Schmidt P, Steiger R, Matzarakis A (2012) Artificial snowmaking possibilities and climate change based on regional climate modeling in the Southern Black Forest. Meteorologische Zeitschrift 21:167–172

    Google Scholar 

  47. Schneider C, Schönbein J (2006) Klimatologische Analyse der Schneesicherheit und Beschneibarkeit von Wintersportgebieten in deutschen Mittelgebirgen. Schriftenreihe Natursport und Ökologie. Deutsche Sporthochschule: Köln (ed), 111

  48. Schneider C, Schönbein J, Ketzler G, Buttstädt M (2006) Winterklima, Klimawandel und Schneesport in Deutschen Mittelgebirgen. FdSnow 29:2–11

    Google Scholar 

  49. Schönbein J, Schneider C (2005) Zur Klimatologie der winterlichen Schneedecke deutscher Mittelgebirge. GEOÖKO 26:197–216

    Google Scholar 

  50. Schott C (ed) (2010) Tourism and the implications of climate change: issues and actions. Bridging tourism theory and practice vol. 3. Emerald Group, Bingley

  51. Scott D (2006) Global environmental change and mountain tourism. In: Gössling S, Hall CM (eds) Tourism and global environmental change. Routledge, London

    Google Scholar 

  52. Scott D (2011) Why sustainable tourism must address climate change. J Sustain Tour 19(1):17.34

    Article  Google Scholar 

  53. Scott D, Lemieux C (2010) Weather and climate information for tourism. Proceedia Environ Sci 1:146–183

    Article  Google Scholar 

  54. Scott D, Matthews L (2011) Climate, tourism & recreation: a bibliography—2010 edition. Department of Geography and Environmental Management, University of Waterloo, Waterloo

    Google Scholar 

  55. Scott D, McBoyle G (2007) Climate change adaptation in the ski industry. Mitig Adapt Strateg Glob Chang 12(8):1411–1431

    Article  Google Scholar 

  56. Scott D, McBoyle G, Mills B (2003) Climate change and the skiing industry in southern Ontario (Canada). Clim Res 23:171–181

    Article  Google Scholar 

  57. Scott D, McBoyle G, Minogue A, Mills B (2006a) Climate change and the sustainability of ski-based tourism in Eastern North America: a reassessment. J Leis Res 14:376–398

    Google Scholar 

  58. Scott D, Jones B, McBoyle G (2006b) Climate, tourism and recreation: a bibliography—1936 to 2006. University of Waterloo, Waterloo

    Google Scholar 

  59. Scott D, de Freitas CR, Matzarakis A (2009) Adaptation in the tourism and recreation sector. In: McGregor GR, Burton I, Ebi K (eds) Biometeorology for adaptation to climate variability and change. Springer, Berlin, pp 171–194

    Google Scholar 

  60. Serquet G, Rebetez M (2011) Climatic change, relationship between tourism demand in the Swiss alps and hot summer air temperatures associated with climate change. Clim Change 108:291–300. doi:10.1007/s10584-010-0012-6

    Google Scholar 

  61. Simpson MC, Gössling S, Scott D, Hall CM, Gladin E (2008) Climate change adaptation and mitigation in the tourism sector: frameworks, tools and practices. UNEP, University of Oxford, UNWTO, WMO, Paris

    Google Scholar 

  62. Steiger R (2010) The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Clim Res 43:251–262

    Article  Google Scholar 

  63. Steiger R (2011a) The impact of climate change on ski touristic demand using an analogue approach. In: Weiermair K, Pechlaner H, Strobl A, Elmi M (eds) Coping with global climate change. Strategies, policies and measures for the tourism industry. Innsbruck University Press, Innsbruck

    Google Scholar 

  64. Steiger R (2011b) The impact of snow scarcity on ski tourism. An analysis of the record warm season 2006/07 in Tyrol (Austria). Tourism Rev 66(3):4–13

    Article  Google Scholar 

  65. Steiger R, Mayer M (2008) Snowmaking and climate change. Future options for snow production in Tyrolean ski resorts. Mt Res Dev 28:292–298. doi:10.1659/mrd.0978

    Article  Google Scholar 

  66. Stock M (2005) KLARA—Klimawandel, Auswirkungen, Risiken und Anpassung. PIK Report 99

  67. UNWTO–UNEP–WMO (2008) Climate change and tourism—responding to global challenges. UNWTO Madrid, Spain

  68. VDI (1998) Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: climate. VDI guideline 3787. Part 2. Beuth, Berlin

  69. Wolfsegger C, Gössling S, Scott D (2008) Climate change risk appraisal in the Austrian ski industry. Tour Rev Int 12:13–23

    Article  Google Scholar 

  70. Zaninovic K, Matzarakis A (2009) The biometeorological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374

    Article  Google Scholar 

  71. Zaninovic K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15:243–251

    Article  Google Scholar 

Download references

Acknowledgments

Tourklim project was funded by ZAMG and the Austrian Federal Ministry for Science and Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Matzarakis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matzarakis, A., Hämmerle, M., Koch, E. et al. The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg. Theor Appl Climatol 110, 645–658 (2012). https://doi.org/10.1007/s00704-012-0686-y

Download citation

Keywords

  • Heat Stress
  • Snow Cover
  • Cold Stress
  • Thermal Comfort
  • Tourism Industry