Skip to main content

An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012)

Abstract

Hurricane Sandy affected the Caribbean Islands and the Northeastern United States in October 2012 and caused 233 fatalities, severe rainfalls, floods, electricity blackouts, and 75 billion U.S. dollars in damages. In this study, the synoptic and dynamical characteristics that led to the formation of the hurricane are investigated. The system was driven by the interaction between the polar jet displacement and the subtropical jet stream. In particular, Sandy was initially formed as a tropical depression system over the Caribbean Sea and the unusually warm sea drove its intensification. The interaction between a rapidly approaching trough from the northwest and the stagnant ridge over the Atlantic Ocean drove Sandy to the northeast coast of United States. To better understand the dynamical characteristics and the mechanisms that triggered Sandy, a non-hydrostatic mesoscale model has been used. Model results indicate that the surface heat fluxes and the moisture advection enhanced the convective available potential energy, increased the low-level convective instability, and finally deepened the hurricane. Moreover, the upper air conditions triggered the low-level frontogenesis and increased the asymmetry of the system which finally affected its trajectory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Apsan HN (2013) Resiliency and continuity: hurricane Sandy and the City University of New York. Environ Qual Manag 23(2):61–76. https://doi.org/10.1002/tqem.21361

    Article  Google Scholar 

  2. Barnes J (2013) North Carolina’s hurricane history: updated with a decade of new storms from Isabel to Sandy. UNC Press, USA

    Google Scholar 

  3. Blake ES, Kimberlain TB, Berg RJ, Cangialosi JP, Beven II JL (2013) Tropical cyclone report: hurricane Sandy. http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf. Accessed 24 Feb 2017

  4. Cheliotis I, Varlas G, Christakos K (2017) The impact of cyclone Xaver on hydropower potential in Norway. Perspectives on atmospheric sciences. Springer, Cham, pp 175–181

    Google Scholar 

  5. Chen Y, Yau MK (2003) Asymmetric structures in a simulated landfalling hurricane. J Atmos Sci 60(18):2294–2312. https://doi.org/10.1175/1520-0469(2003)060%3c2294:ASIASL%3e2.0.CO;2

    Article  Google Scholar 

  6. Christakos K, Varlas G, Reuder J, Katsafados P, Papadopoulos A (2014) Analysis of a low-level coastal jet off the western coast of Norway. Energy Proc 53:162–172. https://doi.org/10.1016/j.egypro.2014.07.225

    Article  Google Scholar 

  7. Christakos K, Cheliotis I, Varlas G, Steeneveld GJ (2016) Offshore wind energy analysis of cyclone Xaver over North Europe. Energy Proc 94:37–44. https://doi.org/10.1016/j.egypro.2016.09.187

    Article  Google Scholar 

  8. Dare RA, McBride JL (2011) The threshold sea surface temperature condition for tropical cyclogenesis. J Clim 24(17):4570–4576. https://doi.org/10.1175/MWR-D-10-05019.1

    Article  Google Scholar 

  9. DeMaria M, Knaff JA, Connell BH (2001) A tropical cyclone genesis parameter for the tropical Atlantic. Weather Forecast 16(2):219–233. https://doi.org/10.1175/1520-0434(2001)016%3c0219:atcgpf%3e2.0.co;2

    Article  Google Scholar 

  10. Diakakis M, Deligiannakis G, Katsetsiadou K, Lekkas E (2015) Hurricane Sandy mortality in the Caribbean and continental North America. Disaster Prev Manag 24(1):132–148. https://doi.org/10.1108/DPM-05-2014-0082

    Article  Google Scholar 

  11. Dunkerton TJ, Montgomery MT, Wang Z (2009) Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmos Chem Phys 9:5587–5646. https://doi.org/10.5194/acp-9-5587-2009

    Article  Google Scholar 

  12. Frank WM, Roundy PE (2006) The role of tropical waves in tropical cyclogenesis. Mon Weather Rev 134(9):2397–2417. https://doi.org/10.1175/MWR3204.1

    Article  Google Scholar 

  13. Galarneau TJ Jr, Davis CA, Shapiro MA (2013) Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon Weather Rev 141(12):4296–4321. https://doi.org/10.1175/MWR-D-13-00181.1

    Article  Google Scholar 

  14. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479. https://doi.org/10.1126/science.1060040

    Article  Google Scholar 

  15. Greene CH, Francis JA, Monger BC (2013) Superstorm Sandy: a series of unfortunate events. Oceanography 26(1):8–9

    Article  Google Scholar 

  16. Halverson JB, Rabenhorst T (2013) Hurricane Sandy: the science and impacts of a superstorm. Weatherwise 66(2):14–23. https://doi.org/10.1080/00431672.2013.762838

    Article  Google Scholar 

  17. Janjic ZI (2003) A non-hydrostatic model based on a new approach. Meteorol Atmos Phys 82:271–285. https://doi.org/10.1007/s00703-001-0587-6

    Article  Google Scholar 

  18. Katsafados P, Papadopoulos A, Mavromatidis E, Gikas N (2011) Quantitative verification statistics of WRF predictions over the Mediterranean region. In: 12th annual WRF users’ event, 20–24 June 2011, Boulder CO, USA.

  19. Katsafados P, Papadopoulos A, Mavromatidis E, Pytharoulis I (2011b) Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat Hazards Earth Syst Sci 11:1233–1246. https://doi.org/10.5194/nhess-11-1233-2011

    Article  Google Scholar 

  20. Katsafados P, Papadopoulos A, Korres G, Varlas G (2016) A fully coupled atmosphere–ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms. Geosci Model Dev 9(1):161–173. https://doi.org/10.5194/gmd-9-161-2016

    Article  Google Scholar 

  21. Landsea CW (1993) A climatology of intense (or major) Atlantic hurricanes. Mon Weather Rev 121:1703–1713. https://doi.org/10.1175/1520-0493(1993)121%3c1703:ACOIMA%3e2.0.CO;2

    Article  Google Scholar 

  22. Latif M, Keenlyside N, Bader J (2007) Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys Res Lett. https://doi.org/10.1029/2006GL027969

    Google Scholar 

  23. Lin II, Chen CH, Pun IF, Liu WT, Wu CC (2009) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett. https://doi.org/10.1029/2008GL035815

    Google Scholar 

  24. Magnusson L, Bidlot JR, Lang ST, Thorpe A, Wedi N, Yamaguchi M (2014) Evaluation of medium-range forecasts for hurricane Sandy. Mon Weather Rev 142(5):1962–1981. https://doi.org/10.1175/MWR-D-13-00228.1

    Article  Google Scholar 

  25. Manganello JV, Hodges KI, Kinter JL III, Cash BA, Marx L, Jung T, Achuthavarier D, Adams JM, Altshuler EL, Huang B, Jin EK, Stan C, Towers P, Wedi N (2012) Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25(11):3867–3893. https://doi.org/10.1175/JCLI-D-11-00346.1

    Article  Google Scholar 

  26. Molinari J, Romps DM, Vollaro D, Nguyen L (2012) CAPE in tropical cyclones. J Atmos Sci 69(8):2452–2463. https://doi.org/10.1175/JAS-D-11-0254.1

    Article  Google Scholar 

  27. Molthan A, Jedlovec G (2013) Satellite observations monitor outages from Superstorm Sandy. Eos Trans Am Geophys Union 94(5):53–54. https://doi.org/10.1002/2013EO050001

    Article  Google Scholar 

  28. Munsell EB, Zhang F (2014) Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J Adv Model Earth Syst 6(1):38–58. https://doi.org/10.1002/2013MS000297

    Article  Google Scholar 

  29. NOAA (2015) Historical hurricane tracks archive. http://coast.noaa.gov/hurricanes. Accessed 24 Feb 2017

  30. Pytharoulis I, Thorncroft C (1999) The low-level structure of African easterly waves in 1995. Mon Weather Rev 127(10):2266–2280. https://doi.org/10.1175/1520-0493(1999)127%3c2266:TLLSOA%3e2.0.CO;2

    Article  Google Scholar 

  31. Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang H, Sela J, Iredell M, Treadon R, Kleist D, Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool V, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  32. Shapiro MA, Keyser DA (1990) Fronts, jet streams, and the tropopause. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, Silver Spring

    Book  Google Scholar 

  33. Simpson RH, Saffir H (1974) The hurricane disaster potential scale. Weatherwise 27(8):169

    Google Scholar 

  34. Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. In: Technical report TN-4751STR, NCAR

  35. Thorncroft CD, Hoskins BJ (1994) An idealized study of African easterly waves. I: A linear view. Q J R Meteorol Soc 120(518):953–982. https://doi.org/10.1002/qj.49712051809

    Article  Google Scholar 

  36. Trenberth KE, Fasullo J (2007) Water and energy budgets of hurricanes and implications for climate change. J Geophys Res 112:D23107. https://doi.org/10.1029/2006JD008304

    Article  Google Scholar 

  37. Varlas G, Katsafados P, Papadopoulos A (2013) The synoptic and dynamical characteristics of the hurricane Sandy. In: 13th CEST 5–7 Sep 2013, Athens (available at paper, accessed 29 Nov 2017)

  38. Varlas G, Katsafados P, Papadopoulos A, Korres G (2017) Implementation of a two-way coupled atmosphere–ocean wave modeling system for assessing air–sea interaction over the Mediterranean Sea. Atmos Res. https://doi.org/10.1016/j.atmosres.2017.08.019

  39. Wu CC, Cheng HJ, Wang Y, Chou KH (2009) A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon Weather Rev 137(1):21–40. https://doi.org/10.1175/2008MWR2516.1

    Article  Google Scholar 

  40. Xie L, Yan T, Pietrafesa LJ, Morrison JM, Karl T (2005) Climatology and interannual variability of North Atlantic hurricane tracks. J Clim 18(24):5370–5381. https://doi.org/10.1175/JCLI3560.1

    Article  Google Scholar 

  41. Xu W, Jiang H, Kang X (2014) Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in South China and Southeast United States. Atmos Res 139:18–26. https://doi.org/10.1016/j.atmosres.2013.12.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the gridded analyses and surface observational data recorded by stations of World Meteorological Organization (WMO) used in the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Varlas.

Additional information

Responsible Editor: F. Mesinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varlas, G., Papadopoulos, A. & Katsafados, P. An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012). Meteorol Atmos Phys 131, 443–453 (2019). https://doi.org/10.1007/s00703-017-0577-y

Download citation