Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain

Abstract

The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Elkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  2. Almazroui M (2013) Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS). Int J Climatol 33:2247–2259. doi:10.1002/joc.3721

    Article  Google Scholar 

  3. Almazroui M (2015) RegCM4 in climate simulation over CORDEX-MENA/Arab domain: selection of suitable domain, convection and land-surface schemes. Int J Climatol. doi:10.1002/joc.4340

    Google Scholar 

  4. Almazroui M, Nazrul Islam M, Al-Khalaf AK, Saeed F (2015) Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain. Theor Appl Climatol. doi:10.1007/s00704-015-1463-5

    Google Scholar 

  5. Avgoustoglou A (2011) Various implementations of a cloud scheme in cosmo model. COSMO Newsletter 11. http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter11/2_avgoustoglou.pdf

  6. Bachner S, Kapala A, Simmer C (2008) Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol Z 17(4):407–419

    Article  Google Scholar 

  7. Bellprat O (2013) Parameter uncertainty and calibration of regional climate models. PhD Thesis, ETH Zurich

  8. Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Objective calibration of regional climate models. J Geophys Res 117(D23). doi:10.1029/2012JD018262

  9. Beven K (2002) Towards a coherent philosophy for modelling the environment. Proc R Soc Lond A 458:2465–2484. doi:10.1098/rspa.2002.0986

    Article  Google Scholar 

  10. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Change 2:433–436. doi:10.1038/ntclimate1454

    Article  Google Scholar 

  11. Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) Africa. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 433–467

    Google Scholar 

  12. Charney J, Quirk WJ, Chow S, Kornfield J (1977) A comparative study of the effect of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  13. Christensen H, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  14. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102(432):405–418. doi:10.1002/qj.49710243210

    Google Scholar 

  15. Davies HC (1983) Limitations of some common lateral boundary schemes used in regional NWP models. Mon Weather Rev 111:1002–1012. doi:10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2

    Article  Google Scholar 

  16. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  17. Dosio A, Panitz HJ, Schubert-Frisius M, Luethi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. doi:10.1007/s00382-014-2262-x

    Article  Google Scholar 

  18. Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konare´ A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35:175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  19. Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Chang L, Awange JL, Dosio A, Ketiem P, Nikulin G, Panitz HJ, Büchner M, Stordal F, Tazalikal L (2013) Assessment of the performance of CORDEX regional climate models in simulating east African rainfall. J Clim 26(21):8453–8475. doi:10.1175/JCLI-D-12-00708.1

    Article  Google Scholar 

  20. Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhiédiou A, Kamga A, Browne Klutse NA, Hewitson B, Nikulin G, Lamptey B (2014) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int J Climatol 34(7):2241–2257. doi:10.1002/joc.3834

    Article  Google Scholar 

  21. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin 58(3):175–183

    Google Scholar 

  22. Grasselt R, Schuettemeyer D, Warrach-Sagi K, Ament F, Simmer C (2008) Validation of TERRA-ML with discharge measurements. Meteorol Z 17:763–773. doi:10.1127/0941-2948/2008/0334

    Article  Google Scholar 

  23. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS310 dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  24. IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden J, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  25. IPCC (2013) Climate change 2013: the physical science basis. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  26. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129

    Article  Google Scholar 

  27. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model I: Assessment of control climate including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121(526):1413–1449. doi:10.1002/qj.49712152610

    Google Scholar 

  28. Kalognomou EA, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Hewitson B, Dosio A, Nikulin G, Panitz HJ, Büchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J Clim 26(23):9477–9506. doi:10.1175/JCLI-D-12-00703.1

    Article  Google Scholar 

  29. Kaspar F, Cubasch U (2008) Simulation of East African precipitation patterns with the regional climate model CLM. Meteorol Z 17(4):511–517

    Article  Google Scholar 

  30. Kothe S (2011) The radiation budget in a regional climate model. PhD Thesis, Goethe University of Frankfurt

  31. Kothe S, Panitz HJ, Ahrens B (2014a) Analysis of the radiation budget in COSMO-CLM regional simulations for Africa. Meteorol Z. doi:10.1127/0941-2948/2014/0527

    Google Scholar 

  32. Kothe S, Luthi D, Arhens B (2014b) Analysis of the West African Monsoon system in the regional climate model COSMO-CLM. Int J Climatol 34(481):493. doi:10.1002/joc.3702

    Google Scholar 

  33. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112(2):189–215

    Article  Google Scholar 

  34. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  35. Krähenmann S, Kothe S, Panitz H-J, Ahrens B (2013) Evaluation of daily maximum and minimum 2 m temperatures as simulated with the regional climate model COSMO-CLM over Africa. Meteorol Zeitschrift 22(3):297–316. doi:10.1127/0941-2948/2013/0468

    Article  Google Scholar 

  36. Laprise R, Hernandez-Diaz L, Tete K, Sushama L, Separovic L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41:3219–3246

    Article  Google Scholar 

  37. Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. doi:10.1007/s00382-009-0553-4

    Article  Google Scholar 

  38. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112(G1):G01023. doi:10.1029/2006JG000168

    Google Scholar 

  39. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10(2):111–127. doi:10.1002/joc.3370100202

    Article  Google Scholar 

  40. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grid. Int J Climatol 25:693–712

    Article  Google Scholar 

  41. Murphy AH (1988) Skill scores based on the mean square error and their relationship to the correlation coefficient. Mon Weather Rev 116:2417–2424

    Article  Google Scholar 

  42. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. doi:10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  43. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, Validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  44. Panitz HJ, Berg P, Schadler G, Fosser G (2012) Modelling near future regional climate change for Germany and Africa, in High Performance Computing in Science and Engineering ‘11: Transactions of the High Performance Computing Center Stuttgart (HLRS). Nagel WE, Kröner DB, Resch M (eds). Springer, pp 503–511. doi:10.1007/978-3-642-23869-7

  45. Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim Dyn 42(11–12):3015–3038. doi:10.1007/s00382-013-1834-5

    Article  Google Scholar 

  46. Pfeifroth U, Hollmann R, Ahrens B (2012) Cloud Cover Diurnal Cycles in Satellite Data and Regional Climate Model Simulations. Meteorol Z 21(6):551–560

    Article  Google Scholar 

  47. Randall DA, Wielicki BA (1997) Measurements, models, and hypotheses in the atmospheric sciences. Bull Amer Meteor Soc 78(3):399–406

    Article  Google Scholar 

  48. Rienecker M, Suarex MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert S, Takacs L, Kim G, Bloom S, Chen J, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson F, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  49. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498. doi:10.1127/0941-2948/2008/0297

    Article  Google Scholar 

  50. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  51. Rosenfeld D, Mintz Y (1988) Evaporation of rain falling from convective clouds as derived from radar measurements. J Appl Meteorol 27:209–215

    Article  Google Scholar 

  52. Roudi-Fahimi F, Kent MM (2007) Challenges and opportunities—the population of the Middle East and North Africa. Popul Bull 62(2):1–21

    Google Scholar 

  53. Ruti PM et al (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Let 12:116–122. doi:10.1002/asl.305

    Article  Google Scholar 

  54. Salzmann N, Kotlarski S, von Waldow H, Rajczak J (2013) Advancing and facilitating the use of RCM data in climate impacts research. Impacts World 2013: International Conference on Climate Change Effects (Conference Proceedings), pp 565–572. doi: 10.2312/pik.2013.001

  55. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi:10.1007/s00704-013-0860-x

    Article  Google Scholar 

  56. Seth A, Giorgi F (1998) The Effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  57. Simon T, Wang D, Hense A, Simmer C, Ohlwein C (2013) Generation and transfer of internal variability in a regional climate model. Tellus A 65:22485

    Google Scholar 

  58. Smagorinsky J (1960) On the dynamical prediction of large-scale condensation by numerical methods. Am Geophys Union. doi:10.1029/GM005p0071

    Google Scholar 

  59. Sommeria G, Deardorff JW (1977) Subgrid-scale condensation in models of nonprecipitating clouds. J Atmos Sci 34(2):344–355. doi:10.1175/1520-0469(1977)0340344:SSCIMO2.0.CO;2

    Article  Google Scholar 

  60. Stanelle T, Vogel B, Vogel H, Baumer D, Kottmeier C (2010) Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys 10:10771–10788. doi:10.5194/acp-10-10771-2010

    Article  Google Scholar 

  61. Steiner AL, Pal JS, Sa Rauscher, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  62. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath A, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Met Atmos Phys 82:75–96. doi:10.1007/s00703-001-0592-9

    Article  Google Scholar 

  63. Suklitsch M, Gobiet A, Leuprecht A, Frei C (2008) High resolution sensitivity studies with the regional climate model CCLM in the Alpine region. Meteorol Zeithschrift 17(4):467–476. doi:10.1127/0941-2948/2008/0308

    Article  Google Scholar 

  64. Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35:231–247. doi:10.1007/s00382-009-0613-9

    Article  Google Scholar 

  65. Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol 33(7):1805–1817. doi:10.1002/joc.3551

    Article  Google Scholar 

  66. Tanrè D, Geleyn JF, Slingo JM (1984) First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In: Gerber H, Deepak A (eds) Aerosols and their climatic effects. Deepak Publ, Hampton, pp 133–177

    Google Scholar 

  67. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  68. Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101(D14):19237–19244. doi:10.1029/95JD03610

    Article  Google Scholar 

  69. Tegen I, Lacis AA, Fung I (1996) The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380:419–422. doi:10.1038/380419a0

    Article  Google Scholar 

  70. Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Climatol 33:3055–3072. doi:10.1002/joc.3650

    Article  Google Scholar 

  71. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  72. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, p 160

    Google Scholar 

  73. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  74. Willmott CJ, Matsuura K, Robeson SM (2009) Ambiguities inherent in sums-of-squares-based error statistics. Atmos Environ 43:749–752

    Article  Google Scholar 

  75. Wu W, Lynch AH, Rivers A (2005) Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. J Clim 18(7):917–933

    Article  Google Scholar 

  76. Zittis G, Hadjinicolaou P, Lelieveld J (2014) WRF sensitivity to physics parameterizations over the MENA-CORDEX domain. In: Bärring L, Reckermann M, Rockel B, Rummukainen M (eds) Proc. 3rd Int. Workshop Lund Regional-Scale Climate Modelling Workshop, Lund, Sweden 16-19 June 2014, pp 308–309

  77. Zubler EM, Lohmann U, Lüthi D, Schär C (2011) Intercomparison of aerosol climatologies for use in a regional climate model over Europe. Geophys Res Lett 38(15):L15705. doi:10.1029/2011GL048081

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andreas Will (TU Cottbus) for all the suggestions provided and Mansour Almazroui (King Abdulaziz University) for the valuable information provided. Simon Krichak (University of Tel Aviv) is also acknowledged for the useful discussions. UDEL Air Temperature and Precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder (Colorado, USA) from their Web site at http://www.esrl.noaa.gov/psd/. All figures presented in this paper were obtained with CLIME, a special purpose GIS software integrated in ESRI ArcGIS Desktop 10.X, developed at CMCC (ISC Division) in order to evaluate multiple climate features easily and study climate changes over specific geographical domains with their related effects on the environment, including impacts on soil.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Bucchignani.

Additional information

Responsible Editor: J.-F. Miao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material.

The following supporting information is available as part of the online article:Fig. S1 The CORDEX-MENA domain (27 W–76E, 7S–45 N) with surface height (m) and the eleven evaluation regions defined in Almazroui (2015). Fig. S2 (a-b) Taylor diagrams of 2-meter temperature (1980–1984) for the eleven subdomains. The CRU dataset is used as a reference field. Fig. S3 (a-b) Monthly time series of 2-meter temperature (°C) (1980–1984) for the eleven subdomains. Fig. S4 (a-b) Taylor diagrams of total precipitation (1980–1984) for the eleven subdomains. The CRU dataset is used as a reference field. Fig. S5 (a-b) Monthly time series of total precipitation (mm/month) (1980–1984) for the eleven subdomains. Fig. S6 (a-b) Monthly time series of total cloud cover (%) (1980–1984) for the eleven subdomains. Fig. S7 (a-b) Monthly time series of mean sea level pressure (hPa) (1980–1984) for the eleven subdomains Supplementary material 1 (PDF 4726 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bucchignani, E., Cattaneo, L., Panitz, H. et al. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorol Atmos Phys 128, 73–95 (2016). https://doi.org/10.1007/s00703-015-0403-3

Download citation

Keywords

  • Root Mean Square Error
  • Aerosol Optical Depth
  • Climate Research Unit
  • Mean Absolute Error
  • Global Precipitation Climatology Project