Contributions of solar and greenhouse gases forcing during the present warm period

Abstract

Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bauer E, Claussen M, Brovkin V, Huenerbein A (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30(6):1276. doi:10.1029/2002GL016639

    Article  Google Scholar 

  2. Beer J, Mende W, Stellmacher R (2000) The role of the sun in climate forcing. Quat Sci Rev 19:403–415

    Article  Google Scholar 

  3. Bertrand C, Loutre MF, Crucifix M, Berger A (2002) Climate of the last millennium : a sensitivity study. Tellus 54A:221–224

    Article  Google Scholar 

  4. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys ResAtmos 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  5. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, Park YD (2012) The global temperature anomaly and solar North-South asymmetry. Asia-Pacific J Atmos Sci 48(3):253–257

    Article  Google Scholar 

  6. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277. doi:10.1126/science.289.5477.270

    Article  Google Scholar 

  7. Crowley TJ, Kim KY (1996) Comparison of proxy records of climate change and solar forcing. Geophys Res Lett 23:359–362

    Article  Google Scholar 

  8. Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? A comment on ‘man-made versus natural climate change’. AMBIO 29(1):51–54. doi:10.1579/0044-7447-29.1.51

    Google Scholar 

  9. Douglass DH, Clader BD (2002) Climate sensitivity of the earth to solar irradiance. Geophys Res Lett 29NO 16. 10.1029/2002GL015345

  10. Free M, Robock A (1999) Global warming in the context of the little ice age. J Geophys Res 104(D16):19057–19070

    Article  Google Scholar 

  11. Gonzalez-Rouco F, von Storch H, Zorita E (2003) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30:2116

    Article  Google Scholar 

  12. Hughes MK, Diaz HF (1994) Was there a ‘medieval warm period’, and if so, where and when? Clim Change 26:109–142

    Article  Google Scholar 

  13. Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the northern hemisphere. Nature Geos 4:753–757. doi:10.1038/ngeo1282Received

    Article  Google Scholar 

  14. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperature: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Article  Google Scholar 

  15. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198

    Article  Google Scholar 

  16. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model -ECHO-G. Ger Clim Comput Cent (DKRZ) Tech Rep 18:62

    Google Scholar 

  17. Liu J, Wang B, Wang H, Kuang X, Ti R (2009) Forced response of the east asian summer rainfall over the past millennium: results from a coupled model simulation. Clim Dyn 36:323–336. doi:10.1007/s00382-009-0693-6

    Article  Google Scholar 

  18. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  19. Mann ME (2002) Medieval climatic optimum, in Encyclopedia of Global Environmental Change. MacCracken MC, Perry JS (eds), John Wiley, Chichester, pp 514–516

  20. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res Atmos 112:D12109

    Article  Google Scholar 

  21. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105(36):13252–13257

    Article  Google Scholar 

  22. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260. doi:10.1126/science.1177303

    Article  Google Scholar 

  23. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Climate 16:426–444

    Article  Google Scholar 

  24. Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769. doi:10.1126/science.1106663

    Article  Google Scholar 

  25. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118. doi:10.1126/science.1172872

    Article  Google Scholar 

  26. Min SK, Legutke S, Hense A, Kwon WT (2005a) Internal variability in a 1000-year control simulation with the coupled climate model ECHO-G—I. Near-surface temperature, precipitation and mean sea level pressure. Tellus 57A:605–621

    Article  Google Scholar 

  27. Min SK, Legutke S, Hense A, Kwon WT (2005b) Internal variability in a 1000-year control simulation with the coupled climate model ECHO-G—II. El Niño Southern Oscillation and North Atlantic Oscillation. Tellus 57A:622–640

    Article  Google Scholar 

  28. Misios S, Schmidt H (2012) Mechanisms involved in the amplification of the 11-year solar cycle signal in the tropical pacific ocean. J Climate. doi:10.1175/JCLI-D-11-00261.1

    Google Scholar 

  29. Reid GC (1997) Solar forcing of global climate change since the mid-17th century. Clim Change 37:391–405

    Article  Google Scholar 

  30. Rind D, Shindell D, Perlwitz J, Lerner J, Lonergan P, Lean J, McLinden C (2004) The relative importance of solar and anthropogenic forcing of climate change between the maunder minimum and the present. J Clim 17:906–929

    Article  Google Scholar 

  31. Robock A, Free M (1996) The volcanic record in ice cores for the past 2000 years.in Climatic Variations and Forcing Mechanisms of last 2000 years. Jones P, Bradley R and Jouzel J, Springer-Verlag, New York, pp 533–546

  32. Scafetta N, West BJ (2006) Phenomenological solar contribution to the 1900–2000 global surface warming. Geophys Res Lett 33:L05708. doi:10.1029/2005GL025539

    Google Scholar 

  33. Schwartz S, Charlson RJ, Kahn RA, Ogren JA, Rodhe H (2010) Why hasn’t earth warmed as much as expected? J Clim 23:2453–2464. doi:10.1175/2009JCLI3461.1

    Article  Google Scholar 

  34. Song X, Lubin D, Zhang GJ (2010) Increased greenhouse gases enhance regional climate response to a maunder minimum. Geophys Res Lett 37:L01703. doi:10.1029/2009GL041290

    Article  Google Scholar 

  35. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) IPCC (2013) summary for policymakers. In: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  36. Tett SFB, Stott PA, Allen MR, Ingram WJ, Mitchell JFB (1999) Causes of twentieth-century temperature change near the Earth’s surface. Nature 399:569–572

    Article  Google Scholar 

  37. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)). Cambridge University Press, Cambridge and New York

  38. von Storch H, Zorita E, Jones JM, Dmitriev Y, Tett SFB (2004) Reconstructing past climate from noisy data. Science 304:679–682

    Article  Google Scholar 

  39. Xueyuan K, Jian L, Yaocun Z, Danqing H, Ying H (2011) Multi-timescale variation of East Asian Winter Monsoon intensity and its relation with sea surface temperature during last millennium based on ECHO-G simulation. Asia-Pacific J Atmos Sci 47(5):485–495. doi:10.1007/s13143-011-0033-8

    Article  Google Scholar 

  40. Zorita E, González-Rouco F, Legutke S (2003) Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Climate 16:1378–1390

    Article  Google Scholar 

  41. Zorita E, González-Rouco JF, von Storch H, Montávez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707. doi:10.1029/2004GL021563

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. S.-Y. Yim at IPRC for providing the ERIK simulation data sets. This work is supported by Korea Ministry of Environment as “Climate Change Correspondence Program” and S.-W. Yeh is also supported from the Brain Korea 21 Plus Project in Department of Marine Sciences and Convergent Technology of Hanyang University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Additional information

Responsible editor: S. Hong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, HG., Yeh, SW., Kim, JW. et al. Contributions of solar and greenhouse gases forcing during the present warm period. Meteorol Atmos Phys 126, 71–79 (2014). https://doi.org/10.1007/s00703-014-0324-6

Download citation

Keywords

  • Warm Period
  • Medieval Warm Period
  • Climate Proxy
  • Global Mean Surface Temperature
  • Effective Radiative Forcings