Skip to main content

Advertisement

Log in

Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson’s disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson’s or Alzheimer’s diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarsland D, Larsen JP, Cummins JL, Laake K (1999) Prevalance and clinical correlates of psychosis symptoms in Parkinson’s diseases; a community-based study. Arch Neurol 56:595–601

    CAS  PubMed  Google Scholar 

  • Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034

    CAS  PubMed  Google Scholar 

  • Amit T, Avramovich-Tirosh Y, Youdim MB, Mandel S (2008) Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 22(5):1296–1305

    CAS  PubMed  Google Scholar 

  • Amit T, Bar-Am O, Mechlovich D, Kupershmidt L, Youdim MBH, Weinreb O (2017) The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer’s disease models. Neuropharmacology 123:359–367

    CAS  PubMed  Google Scholar 

  • Amrein R, Martin JR, Cameron AM (1999) Moclobemide in patients with dementia and depression. Adv Neurol 80:509–519

    CAS  PubMed  Google Scholar 

  • Angst J, Amrien R, Stabl M (1995) Moclobemide and tricyclic antidepressants in severe depression: meta analysis and prospective studies. Clin Psychpharmacol 15:16S–24S

    CAS  Google Scholar 

  • Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MB (2007) Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem 100:490–502

    CAS  PubMed  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2005) Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 19:1899–1901

    CAS  PubMed  Google Scholar 

  • Bar-Am O, Amit T, Kupershmidt L, Aluf Y, Mechlovich D, Kabha H, Danovitch L, Zurawski VR, Youdim MB, Weinreb O (2015) Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson’s disease and aging. Neurobiol Aging 36(3):1529–1542

    CAS  PubMed  Google Scholar 

  • Bech P (1993) Depressive syndrome in Parkinson’s disease: clinical manifestation. In: Mental dysfunction in Parkinson’s disease. Vrije, Amsterdam, pp 314–324

    Google Scholar 

  • Ben Shachar D, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46(2):254–263

    CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MB (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56(4):1441–1444

    CAS  PubMed  Google Scholar 

  • Bette S, Shpiner DS, Singer C, Moore H (2018) Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: a review of the current clinical evidence. Ther Clin Risk Manag 14:1737–1745

    PubMed  PubMed Central  Google Scholar 

  • Bieck PR, Antonin KH, Schmidt E, Wurhrich I, Haefely WE (1988) Clinical pharmacology of reversible monoamine oxidase inhibitors. Clin Neuropharmacol 16(Suppl. 2):S34–S41

    Google Scholar 

  • Binde CD, Tvete IF, Gåsemyr J, Natvig B, Klemp M (2018) A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson’s disease. Br J Clin Pharmacol 84(9):1917–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birkmayer W, Riederer P (1975) Biochemical post-mortem findings in depressed patients. J Neural Transm 37(2):95–109

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P (1986) Biological aspects of depression in Parkinson’s disease. Psychopathology 19(Suppl 2):58–61

    PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MB, Linauer W (1975) The potentiation of the anti akineti effect after l-dopa treatment by an inhibitor of MAO-B, deprenil. J Neural Transm 36(3–4):303–326

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L, Youdim MB (1977) Implications of combined treatment with ‘Madopar’ and l-deprenil in Parkinson’s disease. A long-term study. Lancet 26(8009):439–443 1(

    Google Scholar 

  • Bridge TP, Soldo BJ, Phelps BH, Wise CD, Rancak MJ, Wyatt RJ (1985) Platelet monoamine oxidase activity demographic characteristics contribute to enzyme activity variability. J Gerontol 40:23–28

    CAS  PubMed  Google Scholar 

  • Carradori S, Secci D, Petzer JP (2018) MAO inhibitors and their wider applications: a patent review. Expert Opin Ther Pat 28(3):211–226

    CAS  PubMed  Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of monoamine oxidase inhibitors. Prog Drug Res 38:171–279

    CAS  PubMed  Google Scholar 

  • Chan-Palay V (1992) Depression and dementia of Alzheimer’s type: a role for moclobemide. Psychopharmacology 106:5137–5514

    Google Scholar 

  • Collins GGS, Sandler M, Williams ED, Youdim MBH (1970) Multiple forms of human brain monoamine oxidase. Nature 225:817–820

    CAS  PubMed  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113(504):1237–1264

    CAS  PubMed  Google Scholar 

  • Corbineau S, Breton M, Mialet-Perez J, Costemale-Lacoste JF (2017) Major depression and heart failure: interest of monoamine oxidase inhibitors. Int J Cardiol 247:1–6

    PubMed  Google Scholar 

  • Da Prada M, Keller H, Keller R et al (1981) Ro 11-1163, a specific short acting MAO inhibitor with antidepressant properties. In: Monoamine oxidase. Basic and clinical frontiers. Excerpta Medica, Amsterdam, pp 183–196

    Google Scholar 

  • Da Prada M, Zürcher G, Wüthrich I, Haefely WE (1988) On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm Suppl 26:31–56

    CAS  PubMed  Google Scholar 

  • Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69

    CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Schwarte K, Ziegler C, Lesch KP, Deckert J, Arolt V, Zwanzger P, Baune BT (2015) Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm (Vienna) 122(1):99–108

    CAS  Google Scholar 

  • Edmondson DE, Binda C (2018) Monoamine oxidases. Subcell Biochem 87:117–139

    PubMed  Google Scholar 

  • Erfurth AB. Back T (1999) Severe therapy refractory depression as initial mainstream of Parkinson’s disease. Psychiatr Pract 26:46–47

    Google Scholar 

  • Finberg JPM, Tenne M, Youdim MBH (1981) Tyramine antagonistic properties of AGN-1135, and irreversible inhibitor of monoamine oxidase B. Br J Pharmacol 73:65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95:79–88

    CAS  PubMed  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotoxic Res 17:15–27

    CAS  Google Scholar 

  • Glezer S, Finberg JP (2003) Pharmacological comparison between the actions of methamphetamine and 1-aminoindan stereoisomers on sympathetic nervous function in rat vas deferens. Eur J Pharmacol 472(3):173–177

    CAS  PubMed  Google Scholar 

  • Golko-Perez S, Amit T, Bar-Am O, Youdim MB, Weinreb O (2017) A novel iron chelator-radical scavenger ameliorates motor dysfunction and improves life span and mitochondrial biogenesis in SOD1G93A ALS Mice. Neurotoxic Res 31(2):230–244

    CAS  Google Scholar 

  • Green AR, Grahame-Smith DG (1975) Handbook of psychopharmacology, vol, 3. Plenum, New York, pp 350–388

    Google Scholar 

  • Green AR, Youdim MBH (1976) Use of animal models to study the action of monoamine oxidase inhibitors. In: Knight J (ed) Monoamine oxidase and its inhibition. Ciba Foundation Symposium No.39. Elsevier, Amsterdam, pp 231–246

  • Green AR, Mitchell BD, Tordoff AF, Youdim MB (1977) Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br J Pharmacol 60(3):343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haefely W, Burkard WP, Cesura AM et al (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacology 106:56–514

    Google Scholar 

  • Haefely W, Burkard WP, Cesura A et al (1993) Pharmacology of moclobemide. Clin Neuropharmacol 13(suppl 2):58–518

    Google Scholar 

  • Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66(6):2621–2624

    CAS  PubMed  Google Scholar 

  • Jansen ENH. Ballering LAP (1999) Combined and selective monoamine oxidase inhibition in the treatment of depression in Parkinson’s disease. Adv Neurol 80:505–509

    Google Scholar 

  • Janssen PA, Leysen JE, Megens AA, Awouters FH (1999) Does phenylethylamine act as an endogenous amphetamine in some patients? Int J Neuropsychopharmacol 2(3):229–240

    CAS  PubMed  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59(3):1168–1171

    CAS  PubMed  Google Scholar 

  • Johnston P (1968) Some observations upon a new inhibitor of monoamine oxidas in brain tissue. Biochem Pharmacol 17:1285–1297

    CAS  PubMed  Google Scholar 

  • Jones AB, Pare CM, Nicholson WJ, Price K (1972) Stacey RSBrain amine concentrations after monoamine oxidase inhibitor administration. Br Med J 1(5791):17–19

  • Kalir A, Sabbagh A, Youdim MBH (1981) Selective acetylenic “suicide” and reversible inhibitors of monoamine oxidase A and B. Br J Pharmacol 73:55–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll J, Magyar K (1972) some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    CAS  PubMed  Google Scholar 

  • Konradi C, Riederer P, Jellinger K, Denney R (1987) Cellular action of MAO inhibitors. J Neural Transm Suppl 25:15–25

    CAS  PubMed  Google Scholar 

  • Konradi C, Svoma E, Jellinger K, Riederer P, Denney R, Thibault J (1988) Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 26(3):791–802

    CAS  PubMed  Google Scholar 

  • Konradi C, Kornhuber J, Sofic E, Heckers S, Riederer P, Beckmann H (1992) Variations of monoamines and their metabolites in the human brain putamen. Brain Res 8(2):285–290 579

    Google Scholar 

  • Korn A, Da Prada M, Raffesberg M, Allen S, Casic S (1988) Tyramine pressor effect in man studies with moclobemide a novel reversible monoamine oxidase inhibitor. J Neural Transm Suppl 26:57–72

    CAS  PubMed  Google Scholar 

  • Korpelainen JT. Hiltunen P. Myllyla VV (1998) Moclobemide –induced hypersexuallity in patients with stroke and Parkinson’s disease. Clin Neuropharmacol 21:251–254

    CAS  PubMed  Google Scholar 

  • Kuhn DM, Wolf WA, Youdim MB (1986) Serotonin neurochemistry revisited: a new look at some old axioms. Neurochem Int 8(2):141–154

    CAS  PubMed  Google Scholar 

  • Kulisevsky J. Pascula-Sedano B (1999) Parkinson’s disease and cognition. Neurologia 14(Suppl. 1):72–81

    PubMed  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MB (2011) Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 189:345–358

    CAS  PubMed  Google Scholar 

  • Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Weinreb O (2012a) Multi-target, neuroprotective and neurorestorative M30 improves cognitive impairment and reduces Alzheimer’s-like neuropathology and age-related alterations in mice. Mol Neurobiol 46(1):217–220

    CAS  PubMed  Google Scholar 

  • Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Weinreb O (2012b) The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer’s disease. Antioxid Redox Signal 17(6):860–877

    CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998a) Parkinson’s disease. Second of two parts. The New England journal of medicine 339:1130–1143

    CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998b) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    CAS  PubMed  Google Scholar 

  • Less AJ, Shaw KM, Kohout LJ, Sandler M, Youdim MBH (1977) Deprenyl in Parkinson’s disease. Lancet 2(8042):791–795

    Google Scholar 

  • Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    CAS  PubMed  Google Scholar 

  • Mann JJ. Gershon D (1980) l-Deprenyl, a monoamine oxidase type B inhibitor in endogenous depression. Life Sci 26:877–882

    CAS  PubMed  Google Scholar 

  • Mann JJ, Aarons SF, Wilner PJ, Keilp JG, Sweeney JA, Pearlstein T, Frances AJ, Kocsis JH, Brown RP (1989) A controlled study of antidepressant efficacy and side effects of l-deprenyl. A selective monoamine oxidase inhibitor. Arch Gen Psychiatry 46:45–50

    CAS  PubMed  Google Scholar 

  • Mendlewicz J, Youdim MBH (1978) Anti-depressant potentiation of 5-hydroxytryptophan by l-deprenyl, a monoamine oxidase type B inhibitor. J Neural Transm 43:279–286

    CAS  PubMed  Google Scholar 

  • Mendlewicz J. Youdim MBH (1979) Anti-depressant potentiation of 5-hydroxytryptophan by l-deprenyl in affective disorder. J Affect Disord 2:137–146

    Google Scholar 

  • Mendlewicz J. Youdim MBH (1983) l-Deprenyl, a selective monoamine oxidase type B inhibitor in the treatment of depression. A double blind examination. Br J Psychiatry 142:507–511

    Google Scholar 

  • Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9:641–651

    CAS  PubMed  Google Scholar 

  • Mössner R, Henneberg A, Schmitt A, Syagailo Y, Grässle M, Hennig T, Simantov R, Gerlach M, Riederer P, Lesch KP (2001) Allelic variation of serotonin transporter expression is associated with depression in Parkinson’s disease. Mol Psychiatry 6(3):350–352

    PubMed  Google Scholar 

  • Müller T (2017) Pharmacokinetic drug evaluation of safinamide mesylate for the treatment of mid-to-late stage Parkinson’s disease. Expert Opin Drug Metab Toxicol 13(6):693–699

    PubMed  Google Scholar 

  • Murphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543

    Google Scholar 

  • Murphy DL, Wright C, Buchsbaum M, Nichols A, Costa JL, Wyatt RJ (1976) Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem Med 16:254–265

    CAS  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M (2018) Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 125(1):53–66

    CAS  Google Scholar 

  • O’Carroll AM, Fowler CJ, Phillips JP, Tobia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase. Arch Pharmacol 322:198–223

    Google Scholar 

  • Paykel E, Youdim MBH (eds) (1993) Monoamine oixidase inhbitors as anti depressants. Raven press, New York

  • Pimentel LS, Allard S, Do Carmo S, Weinreb O, Danik M, Hanzel CE, Youdim MB, Cuello AC (2015) The multi-target drug M30 shows pro-cognitive and anti-inflammatory effects in a rat model of Alzheimer’s disease. J Alzheimers Dis 47(2):373–383

    CAS  PubMed  Google Scholar 

  • Poewe W, Luginger E (1999) Depression in Parkinson’s disease: impediment to recognition and treatment option. Neurology 52:S2–S6

    CAS  PubMed  Google Scholar 

  • Priest RG (1992) Moclobemide, a range of opportunities. Psychopharmacology 106:5140–5142

    Google Scholar 

  • Reif A, Weber H, Domschke K, Klauke B, Baumann C, Jacob CP, Ströhle A, Gerlach AL, Alpers GW, Pauli P, Hamm A, Kircher T, Arolt V, Wittchen HU, Binder EB, Erhardt A, Deckert J (2012) Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations. Am J Med Genet B Neuropsychiatr Genet 159B(7):786–793

    PubMed  Google Scholar 

  • Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D (1978) Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)deprenyl administration. J Neural Transm 43(3–4):271–277

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Riederer P, Sandler M (1979) 2-Phenylethylamine and amphetamine in human brain: effects of l-deprenyl in Parkinson’s disease [proceedings]. Biochem Soc Trans 7(1):143–145

    CAS  PubMed  Google Scholar 

  • Ricken R, Ulrich S, Schlattmann P, Adli M (2017) Tranylcypromine in mind (Part II): review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur Neuropsychopharmacol 27(8):714–731

    CAS  PubMed  Google Scholar 

  • Riederer P, Laux G (2011) MAO-inhibitors in Parkinson’s disease. Exp Neurobiol 20(1):1–17

    PubMed  PubMed Central  Google Scholar 

  • Riederer P, Müller T (2018) Monoamine oxidase-B inhibitors in the treatment of Parkinson’s disease: clinical-pharmacological aspects. J Neural Transm (Vienna) (in press)

  • Riederer P, Youdim MBH (1986) Human brain monoamine oxidase activity and monoamine metabolism in Parkinsonian patients treated with l deprenyl. J Neurochem 45:1349 56

    Google Scholar 

  • Riederer P, Reynolds GP, Youdim MBH, Jellinger K (1982) In vitro tests of MAO inhibitors in human brain tissue: chemical structure and pharmacological action. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine oxidase. Basic and clinical frontiers. Excerpta Medica. International congress series 564. Proceedings of a symposium held in Hakone, Japan, July 1981

  • Riederer P. Konradi C, Schay V, Kienzl E, Birkmayer W, Youdim MBH (1986) Location of MAOA and MAOB in human brain. A step in understanding the therapeutic action of ldeprenyl. Adv Neurol 45:11119

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52(2):515–520

    CAS  PubMed  Google Scholar 

  • Riederer P, Lachenmayer L, Laux G (2004a) Clinical applications of MAO-inhibitors. Curr Med Chem 11(15):2033–2043

    CAS  PubMed  Google Scholar 

  • Riederer P, Danielczyk W, Grunblatt E (2004b) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25:271–277

    CAS  PubMed  Google Scholar 

  • Sagi Y, Weinstock M, Youdim MB (2003) Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem 86:290–297

    CAS  PubMed  Google Scholar 

  • Schapira AH (2011) Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs 25(12):1061–1071

    CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1967) The catecholamine hypothesis of affective disorders. A review supporting evidence. Int J Psychiatry 4(3):203–217

    CAS  PubMed  Google Scholar 

  • Schmauss M (2002) Kontrolluntersuchungen. In: Riederer P, Laux G (eds) Pöldinger (Hrsg) Neuro-Psychopharmaka, Band 3: Antidepressiva, Phasenpophylaktika und Stimmungsstabilisier 2, neubearbeitete Auflage. Springer, Wien, pp 538–539

    Google Scholar 

  • Serra-Mestres J, Ring HA (1999) Vulnerability to emotional negative stimuli in Parkinson’s disease: an investigation using the emotional stroop task. Neuropychiatry Neuropychol Behav Neurol 12:52–57

    CAS  Google Scholar 

  • Sieradzan K, Chanon S, Stern G, Youdim MBH (1995) The therapeutic potential of moclobemide, a reversible selective monoamine oxidase A inhibitor in Parkinson’s disease. Clin Psychopharmacol 15:51S–60S

    CAS  Google Scholar 

  • Sterling J, Herzig Y, Goren T, Finkelstein N, Lerner D, Goldenberg W, Miskolczi I, Molnar S, Rantal F, Tamas T, Toth G, Zagyva A, Zekany A, Finberg J, Lavian G, Gross A, Friedman R, Razin M, Huang W, Krais B, Chorev M, Youdim MB, Weinstock M (2002) Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J Med Chem 45:5260–5279

    CAS  PubMed  Google Scholar 

  • Sternic N. kacar A. Filipovic S. Svetel M, Kostic VS (1998) The therapeutic effect of moclobemide, a reversible selective monoamine oxidase A inhibitor in Parkinson’s disease. Clin Neuropharmacol 21:93–96

    CAS  PubMed  Google Scholar 

  • Stinton C, McKeith I, Taylor JP, Lafortune L, Mioshi E, Mak E, Cambridge V, Mason J, Thomas A, O’Brien JT (2015) Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. Am J Psychiatry 172(8):731–742

    PubMed  Google Scholar 

  • Szeleny I (ed) (1993) Inhibitors of monoamine oxidase B. Boston: Birkhäuser. Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Eng J Med 28:176–183

  • Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K (2018) Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna)

  • Teixeira FG, Gago MF, Marques P, Moreira PS, Magalhães R, Sousa N, Salgado AJ (2018) Safinamide: a new hope for Parkinson’s disease? Drug Discov Today 23(3):736–744

    CAS  PubMed  Google Scholar 

  • Ulrich S, Ricken R, Adli M (2017) Tranylcypromine in mind (Part I): review of pharmacology. Eur Neuropsychopharmacol 227(8):697–713

    Google Scholar 

  • Vallldeoriola F, Molinuevo J (1999) Therapy of behavioural disorders in Parkinson’s disease. Biomed Parmamacother 53:149–153

    Google Scholar 

  • Van Praag HM (1974) Therapy-resistant depressions. Biochemical and pharmacological considerations. Contributions to biochemistry. Pharmakopsychiatr Neuropsychopharmakol 7(2):88–98

    PubMed  Google Scholar 

  • Van Praag HM (1993) Serotonin and affective psychopathology in Parkinson’s disease. A psychological consequence. In: Mental Dysfunction in Parkinson’s disease. Vrije, Amsterdam, pp 335–350

    Google Scholar 

  • Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB (2006a) Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 15:873–886

    PubMed  Google Scholar 

  • Van der Schyf CJ, Geldenhuys WJ, Youdim MB (2006b) Multifunctional neuroprotective drugs for the treatment of cognitive and movement impaired disorders, including Alzheimer’s and Parkinson’s diseases. Drugs Future 31:447–460

    Google Scholar 

  • Weinreb O, Mandel S, Bar-Am O, Yogev-Falach M, Avramovich-Tirosh Y, Amit T, Youdim MB (2009) Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics 6(1):163–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MB (2010) Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 13(6):919–949

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MB (2012) Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 13(4):483–494

    CAS  PubMed  Google Scholar 

  • Weinstock M, Bejar C, Wang RH, Poltyrev T, Gross A, Finberg JP, Youdim MB (2000) TV 3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer´s disease. J Neural Transm Suppl 60:157–169

    Google Scholar 

  • Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S (2001) Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann NY Acad Sci 939:148–161

    CAS  PubMed  Google Scholar 

  • Weinstock M, Gorodetsky E, Wang RH, Gross A, Weinreb O, Youdim MB (2002a) Limited potentiation of blood pressure response to oral tyramine by brain-selective monoamne oxidase A-B inhibitor, TV-3326 in conscious rabbits (1). Neurpharmacology 43(6):999–1005

    CAS  Google Scholar 

  • Weinstock M, Polytrev T, Bejar C, Youdim MB (2002b) Effect of TV 3326, a novel monoamine-oxidase cholinesterase inhibitor, in rat models of anxiety and depression. Psychopharmacology 160(3):318–324

    CAS  PubMed  Google Scholar 

  • Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim MB (2003) A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson´s disease. Prog Neuropsychopharmacol Biol Psychiatry 27(4):555–561

    CAS  PubMed  Google Scholar 

  • Yang HY, Neff NH (1973) Beta-phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J Pharmacol Exp Ther 187(2):365–371

    CAS  PubMed  Google Scholar 

  • Yogev-Falach M, Bar-Am O, Amit T, Weinreb O, Youdim MB (2006) A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. FASEB J 20(12):2177–2179

    CAS  PubMed  Google Scholar 

  • Youdim MBH (ed) (1995) Reversible and selective inhibitors of monoamine oxidase: new findings. Acta Psychiatr Scand 91:1–43

  • Youdim MB, Buccafusco JJ (2005a) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    CAS  PubMed  Google Scholar 

  • Youdim MB, Buccafusco JJ (2005b) CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 112:519–537

    CAS  PubMed  Google Scholar 

  • Youdim MHB, Riederer P (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm Gen Sect 91(2–3):181–195

    CAS  PubMed  Google Scholar 

  • Youdim MBH, Sourkes TL (1965) The effect of heat, pH and riboflavin deficiency on monoamine oxidase activity. Can J Biochem 43:1305–1318

    CAS  Google Scholar 

  • Youdim MB, Weinstock M (2001) Molecular basis of neuroprotective activities of rasagaline and the anti-Alzheimer drug TV3326 [(N-prpargyl-(3R) aminoindan-5YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 21(6):555–573

    CAS  PubMed  Google Scholar 

  • Youdim MB, Weinstock M (2002) Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev 123(8):1081–1086

    CAS  PubMed  Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M, Bevan-Jones E, Nicholson A (1972) Human brain monoamine oxidase, multiple forms and selective inhibitors. Nature 236:225–228

    CAS  PubMed  Google Scholar 

  • Youdim MBH. Green AR. Grahame-Smith DG (1976) The role of 5-hydroxytryptamine, dopamine and MAO in the production of hyperactivity. In: Advances in Parkinsonism Editiones Roche, Basel, pp 155–163

  • Youdim MBH, Finberg JPM, Tipton KF (1988a) Monoamine oxidase. In: Trendelengurg U, Weiner U (eds) Catecholamine II. Springer, Berlin, pp 119–192

    Google Scholar 

  • Youdim MBH, Da Prada M, Amrein R (eds) (1988b) The cheese effect and new reversible MAO-A inhibitors. J Neural Transm Suppl 26:31–56

  • Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    CAS  PubMed  Google Scholar 

  • Youdim MB, Fridkin M, Zheng H (2005a) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126:317–326

    CAS  PubMed  Google Scholar 

  • Youdim MB, Am B, Yogev-Falach O, Weinreb M, Maruyama O, Naoi WM, Amit T (2005b) Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 79:172–179

    CAS  PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    CAS  PubMed  Google Scholar 

  • Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MB (2005a) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95:68–78

    CAS  PubMed  Google Scholar 

  • Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MB, Fridkin M (2005b) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 13:773–783

    CAS  PubMed  Google Scholar 

  • Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MB (2005c) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95(1):68–78

    CAS  PubMed  Google Scholar 

  • Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA (2012) From anti-Parkinson’s drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer’s disease. J Alzheimers Dis 30(1):1–16

    PubMed  Google Scholar 

  • Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MB, Le W (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21(14):3835–3846

    CAS  PubMed  Google Scholar 

  • Ziegler C, Richter J, Mahr M, Gajewska A, Schiele MA, Gehrmann A, Schmidt B, Lesch KP, Lang T, Helbig-Lang S, Pauli P, Kircher T, Reif A, Rief W, Vossbeck-Elsebusch AN, Arolt V, Wittchen HU, Hamm AO, Deckert J, Domschke K (2016) MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry 6:e773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler C, Wolf C, Schiele MA, Feric Bojic E, Kucukalic S, Sabic Dzananovic E, Goci Uka A, Hoxha B, Haxhibeqiri V, Haxhibeqiri S, Kravic N, Muminovic Umihanic M, Cima Franc A, Jaksic N, Babic R, Pavlovic M, Warrings B, Bravo Mehmedbasic A, Rudan D, Aukst-Margetic B, Kucukalic A, Marjanovic D, Babic D, Bozina N, Jakovljevic M, Sinanovic O, Avdibegovic E, Agani F, Dzubur-Kulenovic A, Deckert J, Domschke K (2018) Monoamine oxidase A gene methylation and its role in posttraumatic stress disorder: first evidence from the South Eastern Europe (SEE)-PTSD study. Int J Neuropsychopharmacol 21(5):423–432. https://doi.org/10.1093/ijnp/pyx111

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa B. H. Youdim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youdim, M.B.H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm 125, 1719–1733 (2018). https://doi.org/10.1007/s00702-018-1942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-018-1942-9

Keywords

Navigation