Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis

High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article
  • 172 Downloads

Abstract

The hallmark of age-related neurodegenerative diseases is the appearance of cellular protein deposits and spreading of this pathology throughout the central nervous system. Growing evidence has shown the involvement and critical role of proteins with prion-like properties in the formation of these characteristic cellular aggregates. Prion-like domains of such proteins with their proposed function in the organization of membraneless organelles are prone for misfolding and promoting further aggregation. Spreading of these toxic aggregates between cells and across tissues can explain the progression of clinical phenotypes and pathology in a stereotypical manner, characteristic for almost every neurodegenerative disease. Here, we want to review the current evidence for the role of prion-like mechanisms in classical neurodegenerative diseases and ALS in particular. We will also discuss an intriguingly central role of the protein TDP-43 in the majority of cases of this devastating disease.

Keywords

Neurodegenerative disease Amyotrophic lateral sclerosis Motor neuron disease TDP-43 FUS Prion-like properties Disease spreading Strains 

Notes

Acknowledgements

This work was supported, in part, the NOMIS foundation and the Helmholtz Virtual Institute “RNA dysmetabolism in ALS and FTD (VH-VI-510)” to A.H.

References

  1. Acevedo-Morantes CY, Wille H (2014) The structure of human prions: from biology to structural models-considerations and pitfalls. Viruses 6:3875–3892.  https://doi.org/10.3390/v6103875 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z, Plückthun A, Mittl P, Paganetti P, Allain FHT, Polymenidou M (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 8:45.  https://doi.org/10.1038/s41467-017-00062-0 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, Parhizkar S, Ward MA, Cavallini A, Jackson S, Bose S, Clavaguera F, Tolnay M, Lavenir I, Goedert M, Hutton ML, O’Neill MJ (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127:667–683.  https://doi.org/10.1007/s00401-014-1254-6 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SSW, Kiskinis E, Winborn B, Freibaum BD, Kanagaraj A, Clare AJ, Badders NM, Bilican B, Chaum E, Chandran S, Shaw CE, Eggan KC, Maniatis T, Taylor JP (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536–543.  https://doi.org/10.1016/j.neuron.2013.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158.  https://doi.org/10.1016/j.cell.2009.02.044 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML et al (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat commun 6:8088.  https://doi.org/10.1038/ncomms9088 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615.  https://doi.org/10.1038/nrneurol.2011.150 CrossRefGoogle Scholar
  8. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRefGoogle Scholar
  9. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593.  https://doi.org/10.1038/nn.4132 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588PubMedCrossRefGoogle Scholar
  11. Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B, Xu G, Borchelt DR (2014) Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 128:791–803.  https://doi.org/10.1007/s00401-014-1342-7 PubMedCrossRefGoogle Scholar
  12. Ayers JI, Fromholt SE, O’Neal VM, Diamond JH, Borchelt DR (2016) Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol 131:103–114.  https://doi.org/10.1007/s00401-015-1514-0 PubMedCrossRefGoogle Scholar
  13. Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1994) Induction of beta (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol Neurobiol 8:25–39PubMedCrossRefGoogle Scholar
  14. Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663.  https://doi.org/10.1016/j.cell.2016.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bellus GA, Hefferon TW, Ortiz de Luna RI, Hecht JT, Horton WA, Machado M, Kaitila I, McIntosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373PubMedPubMedCentralGoogle Scholar
  16. Bergh J, Zetterström P, Andersen PM, Brännström T, Graffmo KS, Jonsson PA, Lang L, Danielsson J, Oliveberg M, Marklund SL (2015) Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proc Natl Acad Sci USA 112:4489–4494.  https://doi.org/10.1073/pnas.1419228112 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bétemps D, Verchère J, Brot S, Morignat E, Bousset L, Gaillard D, Lakhdar L, Melki R, Baron T (2014) Alpha-synuclein spreading in M83 mice brain revealed by detection of pathological alpha-synuclein by enhanced ELISA. Acta Neuropathol Commun 2:29.  https://doi.org/10.1186/2051-5960-2-29 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bhandare VV, Ramaswamy A (2016) Identification of possible siRNA molecules for TDP43 mutants causing amyotrophic lateral sclerosis: in silico design and molecular dynamics study. Comput Biol Chem 61:97–108.  https://doi.org/10.1016/j.compbiolchem.2016.01.001 PubMedCrossRefGoogle Scholar
  19. Bidhendi EE, Bergh J, Zetterström P, Andersen PM, Marklund SL, Brannström T (2016) Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis-like disease. J Clin Invest 126:2249–2253.  https://doi.org/10.1172/JCI84360 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boeynaems S, Bogaert E, Kovacs D et al (2017) Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell 65(1044–1055):e5.  https://doi.org/10.1016/j.molcel.2017.02.013 Google Scholar
  21. Bohnen NI, Warner MA, Kokmen E, Beard CM, Kurland LT (1994) Prior blood transfusions and Alzheimer’s disease. Neurology 44:1159–1160PubMedCrossRefGoogle Scholar
  22. Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP × Tau transgenic mice. Am J Pathol 171:2012–2020PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boluda S, Iba M, Zhang B, Raible KM, Lee VM, Trojanowski JQ (2015) Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol 129:221–237.  https://doi.org/10.1007/s00401-014-1373-0 PubMedCrossRefGoogle Scholar
  24. Borchelt DR, Wong PC, Becher MW, Pardo CA, Lee MK, Xu ZS, Thinakaran G, Jenkins NA, Copeland NG, Sisodia SS, Cleveland DW, Price DL, Hoffman PN (1998) Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol Dis 5:27–35PubMedCrossRefGoogle Scholar
  25. Borel F, Gernoux G, Cardozo B, Metterville JP, Toro Cabreja GC, Song L, Su Q, Gao GP, Elmallah MK, Brown RH Jr, Mueller C (2016) Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther 27:19–31.  https://doi.org/10.1089/hum.2015.122 PubMedCrossRefGoogle Scholar
  26. Bosque PJ, Prusiner SB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74:4377–4386PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, Meier BH, Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575.  https://doi.org/10.1038/ncomms3575 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boylan K (2015) Familial amyotrophic lateral sclerosis. Neurol Clin 33:807–830.  https://doi.org/10.1016/j.ncl.2015.07.001 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C, Ceroni M (2016) Amyotrophic lateral sclerosis and environmental factors. Funct Neurol 31:7–19PubMedPubMedCentralGoogle Scholar
  30. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  31. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72PubMedCrossRefGoogle Scholar
  32. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714.  https://doi.org/10.1038/nrneurol.2013.221 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brahic M, Bousset L, Bieri G, Melki R, Gitler AD (2016) Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol 131:539–548.  https://doi.org/10.1007/s00401-016-1538-0 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732.  https://doi.org/10.1126/science.1172046 PubMedCrossRefGoogle Scholar
  35. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, Kwong L, Lee EB, Elman L, McCluskey L, Fang L, Feldengut S, Ludolph AC, Lee VMY, Braak H, Trojanowski JQ (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38.  https://doi.org/10.1002/ana.23937 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Brown P, Preece M, Brandel JP, Sato T, McShane L, Zerr I, Fletcher A, Will RG, Pocchiari M, Cashman NR, d’Aignaux JH, Cervenáková L, Fradkin J, Schonberger LB, Collins SJ (2000) Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 55:1075–1081PubMedCrossRefGoogle Scholar
  37. Bruce ME, McConnell I, Fraser H, Dickinson AG (1991) The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol 72:595–603PubMedCrossRefGoogle Scholar
  38. Bruce M, Chree A, McConnell I, Foster J, Pearson G, Fraser H (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond B 343:405–411CrossRefGoogle Scholar
  39. Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474.  https://doi.org/10.1016/j.cell.2013.05.037 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Budini M, Romano V, Avendaño-Vázquez SE, Bembich S, Buratti E, Baralle FE (2012) Role of seolected mutations in the Q/N rich region of TDP-43 in EGFR-12xQ/N-induced aggregate formation. Brain Res 1462:139–150.  https://doi.org/10.1016/j.brainres.2012.02.031 PubMedCrossRefGoogle Scholar
  41. Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343PubMedCrossRefGoogle Scholar
  42. Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280:37572–37584PubMedCrossRefGoogle Scholar
  43. Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F (2010) Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 277:2268–2281.  https://doi.org/10.1111/j.1742-4658.2010.07643.x PubMedCrossRefGoogle Scholar
  44. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24.  https://doi.org/10.1038/nrneurol.2014.228 PubMedCrossRefGoogle Scholar
  45. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J, Davies P, O’Neill MJ, Hutton ML, Citron M (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286:34457–34467.  https://doi.org/10.1074/jbc.M111.229633 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci USA 113:6065–6070.  https://doi.org/10.1073/pnas.1604478113 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1:1378–1379PubMedCrossRefGoogle Scholar
  48. Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220.  https://doi.org/10.1038/nrneurol.2010.18 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chia R, Tattum MH, Jones S, Collinge J, Fisher EMC, Jackson GS (2010) Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS ONE 5:e10627.  https://doi.org/10.1371/journal.pone.0010627 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chio A, Calvo A, Moglia C, Mazzini L, Mora G (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 8:740–746.  https://doi.org/10.1136/jnnp.2010.235952 CrossRefGoogle Scholar
  51. Chu Y, Kordower JH (2010) Lewy body pathology in fetal grafts. Ann N Y Acad Sci 1184:55–67.  https://doi.org/10.1111/j.1749-6632.2009.05229.x PubMedCrossRefGoogle Scholar
  52. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347:1436–1441.  https://doi.org/10.1126/science.aaa3650 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M (2013) Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep 5:781–790.  https://doi.org/10.1016/j.celrep.2013.09.043 PubMedCrossRefGoogle Scholar
  54. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913.  https://doi.org/10.1038/ncb1901 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540.  https://doi.org/10.1073/pnas.1301175110 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ, Prusiner SB (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106:20417–20422.  https://doi.org/10.1073/pnas.0910350106 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936PubMedCrossRefGoogle Scholar
  58. Costessi L, Porro F, Iaconcig A, Muro AF (2014) TDP-43 regulates b-adducin (Add2) transcript stability. RNA Biol 11:1280–1290.  https://doi.org/10.1080/15476286.2014.996081 PubMedCrossRefGoogle Scholar
  59. Couthouis J, Hart MP, Shorter J, DeJesus-Hernandez M, Erion R, Oristano R, Liu AX, Ramos D, Jethava N, Hosangadi D et al (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA 108:20881–20890.  https://doi.org/10.1073/pnas.1109434108 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Mojsilovic-Petrovic J, Panossian S et al (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21:2899–2911.  https://doi.org/10.1093/hmg/dds116 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Cronier S, Laude H, Peyrin J-M (2004) Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci USA 101:12271–12276PubMedPubMedCentralCrossRefGoogle Scholar
  62. Cronin S, Hardiman O, Traynor BJ (2007) Ethnic variation in the incidence of ALS: a systematic review. Neurology 68:1002–1007PubMedCrossRefGoogle Scholar
  63. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154PubMedCrossRefGoogle Scholar
  64. Cushman M, Johnson BS, King OD, Gitler AD, Shorter J (2010) Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 123:1191–1201.  https://doi.org/10.1242/jcs.051672 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 111:192–203.  https://doi.org/10.1111/j.1471-4159.2009.06324.x PubMedCrossRefGoogle Scholar
  66. Daviglus ML, Plassman BL, Pirzada A, Bell CC, Bowen PE, Burke JR, Connolly ES Jr, Dunbar-Jacob JM, Granieri EC, McGarry K, Patel D, Trevisan M, Williams JW Jr (2011) Risk factors and preventive interventions for Alzheimer disease: state of the science. Arch Neurol 68:1185–1190.  https://doi.org/10.1001/archneurol.2011.100 PubMedCrossRefGoogle Scholar
  67. de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697.  https://doi.org/10.1016/j.neuron.2011.11.033 PubMedPubMedCentralCrossRefGoogle Scholar
  68. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256.  https://doi.org/10.1016/j.neuron.2011.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215.  https://doi.org/10.1038/nature10353 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Deng H, Gao K, Jankovic J (2014) The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10:337–348.  https://doi.org/10.1038/nrneurol.2014.78 PubMedCrossRefGoogle Scholar
  71. Desplats P, Lee H-J, Bae E-J, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee S-J (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015.  https://doi.org/10.1073/pnas.0903691106 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2:a009258.  https://doi.org/10.1101/cshperspect.a009258 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Dieriks BV, Park TIH, Fourie C, Faull RLM, Dragunow M, Curtis MA (2017) Α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci Rep 7:42984.  https://doi.org/10.1038/srep42984 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ding X, Ma M, Teng J, Teng RKF, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X (2015) Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6:24178–24191PubMedPubMedCentralGoogle Scholar
  75. Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, Nath S (2014) Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis 65:82–92.  https://doi.org/10.1016/j.nbd.2013.12.019 PubMedCrossRefGoogle Scholar
  76. Dormann D, Madl T, Valori CF, Bentmann E, Tahirovic S, Abou-Ajram C, Kremmer E, Ansorge O, Mackenzie IR, Neumann M et al (2012) Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31:4258–4275.  https://doi.org/10.1038/emboj.2012.261 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982.  https://doi.org/10.1126/science.1194516 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Fakhoury M (2015) Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis 15:63–69.  https://doi.org/10.1159/000369933 PubMedCrossRefGoogle Scholar
  79. Fallini C, Bassell GJ, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3703–3718.  https://doi.org/10.1093/hmg/dds205 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY, Chou SC, Lin V, Jin LW, Yuan HS, Cheng IH, Tu PH, Chen YR (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824.  https://doi.org/10.1038/ncomms5824 PubMedCrossRefGoogle Scholar
  81. Fatima M, Tan R, Halliday GM, Kril JJ (2015) Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun 3:47.  https://doi.org/10.1186/s40478-015-0226-y PubMedPubMedCentralCrossRefGoogle Scholar
  82. Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM (2017) Prion strains depend on different endocytic routes for productive infection. Sci Rep 7:6923.  https://doi.org/10.1038/s41598-017-07260-2 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR, Walther P, Ludolph AC, Danzer KM, Weishaupt JH (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911.  https://doi.org/10.1083/jcb.201504057 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101:9683–9688PubMedPubMedCentralCrossRefGoogle Scholar
  85. Flores BN, Dulchavsky ME, Krans A, Sawaya MR, Paulson HL, Todd PK, Barmada SJ, Ivanova MI (2016) Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PLoS ONE 11:e0165084.  https://doi.org/10.1371/journal.pone.0165084 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Fraser H (1982) Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 295:149–150PubMedCrossRefGoogle Scholar
  87. Fraser H, Dickinson AG (1973) Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation. J Comp Pathol 83:29–40PubMedCrossRefGoogle Scholar
  88. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M (2012) Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 72:517–524.  https://doi.org/10.1002/ana.23747 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852.  https://doi.org/10.1074/jbc.M808759200 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Fujimura-Kiyono C, Kimura F, Ishida S, Nakajima H, Hosokawa T, Sugino M, Hanafusa T (2011) Onset and spreading patterns of lower motor neuron involvments predict survival in sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82:1244–1249.  https://doi.org/10.1136/jnnp-2011-300141 PubMedCrossRefGoogle Scholar
  91. Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N (2011) A seeding reaction recapitulates intracellular formation of sarkosyl-insoluble TAR DNA binding protein-43 inclusions. J Biol Chem 286:18664–18672.  https://doi.org/10.1074/jbc.M111.231209 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209:794–796PubMedCrossRefGoogle Scholar
  93. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sacayon P, Zago W, Seubert P, Barbour R, Schenk D, Masliah E (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34:9441–9454.  https://doi.org/10.1523/JNEUROSCI.5314-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Gargiulo-Monachelli GM, Janota F, Bettini M, Shoesmith CL, Strong MJ, Sica RE (2012) Regional spread pattern predicts survival in patients with sporadic amyotrophic lateral sclerosis. Eur J Neurol 19:834–841.  https://doi.org/10.1111/j.1468-1331.2011.03616.x PubMedCrossRefGoogle Scholar
  95. Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644.  https://doi.org/10.1146/annurev-physiol-030212-183712 PubMedCrossRefGoogle Scholar
  96. Gendron TF, Rademakers R, Petrucelli L (2013) TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis 33(Suppl 1):S35–S45PubMedPubMedCentralGoogle Scholar
  97. Gitler AD, Shorter J (2011) RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5:179–187.  https://doi.org/10.4161/pri.5.3.17230 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gitler AD, Tsuiji H (2016) There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res 1647:19–29.  https://doi.org/10.1016/j.brainres.2016.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492.  https://doi.org/10.1073/pnas.0915166107 PubMedPubMedCentralCrossRefGoogle Scholar
  100. González L, Martin S, Jeffrey M (2003) Distinct profiles of PrP(d) immunoreactivity in the brain of scrapie- and BSE-infected sheep: implications for differential cell targeting and PrP processing. J Gen Virol 84:1339–1350PubMedCrossRefGoogle Scholar
  101. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Männel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336.  https://doi.org/10.1038/ncb1841 PubMedCrossRefGoogle Scholar
  102. Grad LI, Cashman NR (2014) Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Prion 8:33–41PubMedCrossRefGoogle Scholar
  103. Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 108:16398–16403.  https://doi.org/10.1073/pnas.1102645108 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, Kumita JR, Luheshi LM, Yousefi M, Coleman BM, Hill AF, Plotkin SS, Mackenzie IR, Cashman NR (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625.  https://doi.org/10.1073/pnas.1312245111 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Guo JL (2011) Lee VMY (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331.  https://doi.org/10.1074/jbc.M110.209296 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Guo L, Shorter J (2015) It’s raining liquids: RNA tunes viscoelasticity and dynamics of membraneless organelles. Mol Cell 60:189–192.  https://doi.org/10.1016/j.molcel.2015.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L, Liu J, Xu M, Yang Y, Wang C, Zhang D, Bigio EH, Mesulam M, Shen Y, Xe Q, Fushimi K, Wu JY (2011) An ALS associated mutation affecting TDP43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18:822–830.  https://doi.org/10.1038/nsmb.2053 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VMY (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117.  https://doi.org/10.1016/j.cell.2013.05.057 PubMedCrossRefGoogle Scholar
  109. Guo JL, Narasimhan S, Changolkar L, He Z, Stieber A, Zhang B, Gathagan RJ, Iba M, McBride JD, Trojanowski JQ, Lee VM (2016) Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J Exp Med 213:2635–2654PubMedPubMedCentralCrossRefGoogle Scholar
  110. Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G et al (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–779.  https://doi.org/10.1016/j.cell.2012.04.016 PubMedCrossRefGoogle Scholar
  111. Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211PubMedPubMedCentralCrossRefGoogle Scholar
  112. Hansen C, Angot E, Bergström A, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725.  https://doi.org/10.1172/JCI43366 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Harrison AF, Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474:1417–1438.  https://doi.org/10.1042/BCJ20160499 PubMedPubMedCentralCrossRefGoogle Scholar
  114. He B, Zheng M, Liu Q, Shi Z, Long S, Lu X, Pei Z, Yuan TF, Su H, Yao X (2017) Injected amyloid beta in the olfactory bulb transfers to other brain regions via neural connections in mice. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0446-1 Google Scholar
  115. Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarström P, Nilsson KPR, Jucker M (2013) Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep 14:1017–1022.  https://doi.org/10.1038/embor.2013.137 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA et al (2015a) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210:529–539.  https://doi.org/10.1083/jcb.201504117 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015b) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210:529–539.  https://doi.org/10.1083/jcb.201504117 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF (2011) Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr.  https://doi.org/10.1371/currents.rrn1210 PubMedPubMedCentralGoogle Scholar
  119. Herva ME, Spillantini MG (2015) Parkinson’s disease as a member of Prion-like disorders. Virus Res 207:38–46.  https://doi.org/10.1016/j.virusres.2014.10.016 PubMedCrossRefGoogle Scholar
  120. Hesketh S, Thompsett AR, Brown DR (2012) Prion protein polymerisation triggered by manganese-generated prion protein seeds. J Neurochem 120:177–189.  https://doi.org/10.1111/j.1471-4159.2011.07540.x PubMedCrossRefGoogle Scholar
  121. Higelin J, Demestre M, Putz S, Delling JP, Jacob C, Lutz AK, Bausinger J, Huber AK, Klingenstein M, Barbi G, Speit G, Huebers A, Weishaupt JH, Hermann A, Liebau S, Ludolph AC, Boeckers TM (2016) FUS mislocalization and vulnerability to DNA damage in ALS patients derived hiPSCs and aging motoneurons. Front Cell Neurosci 10:290.  https://doi.org/10.3389/fncel.2016.00290 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T (2012) Tau protein diffuses along the microtubule lattice. J Biol Chem 287:38559–38568.  https://doi.org/10.1074/jbc.M112.369785 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Holmes BB, Diamond MI (2012) Amyotrophic lateral sclerosis and organ donation: is there risk of disease transmission? Ann Neurol 72:832–836.  https://doi.org/10.1002/ana.23684 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128:805–820.  https://doi.org/10.1007/s00401-014-1343-6 PubMedCrossRefGoogle Scholar
  125. Hommes OR, Leblond CP (1967) Mitotic division of neuroglia in the normal adult rat. J Comp Neurol 129:269–278PubMedCrossRefGoogle Scholar
  126. Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee J-M (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA 106:20324–20329.  https://doi.org/10.1073/pnas.0911281106 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58.  https://doi.org/10.1146/annurev-cellbio-100913-013325 PubMedCrossRefGoogle Scholar
  128. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VMY (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33:1024–1037.  https://doi.org/10.1523/JNEUROSCI.2642-12.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Iguchi Y, Eid L, Parent M, Soucy G, Soucy G, Bareil C, Riku Y, Kawai K, Takagi S, Yoshida M, Katsuno M, Sobue G, Julien JP (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139:3187–3201PubMedCrossRefGoogle Scholar
  130. Imran M, Mahmood S (2011a) An overview of human prion diseases. Virol J 8:559.  https://doi.org/10.1186/1743-422X-8-559 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Imran M, Mahmood S (2011b) An overview of animal prion diseases. Virol J 8:493.  https://doi.org/10.1186/1743-422X-8-493 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015) Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193.  https://doi.org/10.2147/CLEP.S37505 PubMedPubMedCentralGoogle Scholar
  133. Irwin DJ (2016) Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 22:S29–S33.  https://doi.org/10.1016/j.parkreldis.2015.09.020 PubMedCrossRefGoogle Scholar
  134. Ishii T, Kawakami E, Endo K, Misawa H, Watabe K (2017) Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS ONE 12:e0179375.  https://doi.org/10.1371/journal.pone.0179375 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, Geng J, Amin P, DeWitt JP, Mookhtiar AK, Florez M, Ouchida AT, Fan J, Pasparakis M, Kelliher MA, Ravits J, Yuan J (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353:603–608.  https://doi.org/10.1126/science.aaf6803 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498.  https://doi.org/10.1016/j.cell.2015.12.038 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Japtok J, Lojewski X, Naumann M, Klingenstein M, Reinhardt P, Sterneckert J, Putz S, Demestre M, Boeckers TM, Ludolph AC, Liebau S, Storch A, Hermann A (2015) Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging. Neurobiol Dis 82:420–429.  https://doi.org/10.1016/j.nbd.2015.07.017 PubMedCrossRefGoogle Scholar
  138. Jiang LL, Zhao J, Yin XF, He WT, Yang H, Che MX, Hu HY (2016) Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci Rep 6:23928.  https://doi.org/10.1038/srep23928 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:20329–20339.  https://doi.org/10.1074/jbc.M109.010264 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767.  https://doi.org/10.1016/j.cell.2012.04.017 PubMedCrossRefGoogle Scholar
  141. Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J, Sharma AM, Miller TM, Diamond MI (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812.  https://doi.org/10.1016/j.neuron.2016.09.055 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Kim JI, Cali I, Surewicz K, Kong Q, Raymond GJ, Atarashi R, Race B, Qing L, Gambetti P, Caughey B, Surewicz WK (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087.  https://doi.org/10.1074/jbc.C110.113464 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013a) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355.  https://doi.org/10.1146/annurev-biochem-060208-092442 PubMedCrossRefGoogle Scholar
  144. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A et al (2013b) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473.  https://doi.org/10.1038/nature11922 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 6:73.  https://doi.org/10.1186/s13195-014-0073-2 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kimberlin RH, Hall SM, Walker CA (1983) Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61:315–325PubMedCrossRefGoogle Scholar
  147. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80.  https://doi.org/10.1016/j.brainres.2012.01.016 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447PubMedCrossRefGoogle Scholar
  149. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518.  https://doi.org/10.1038/nrn2417 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Kokmen E, Beard CM, O’Brien PC, Kurland LT (1996) Epidemiology of dementia in Rochester, Minnesota. Mayo Clin Proc 71:275–282PubMedCrossRefGoogle Scholar
  151. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506.  https://doi.org/10.1038/nm1747 PubMedCrossRefGoogle Scholar
  152. Körner S, Kollewe K, Fahlbusch M, Zapf A, Dengler R, Krampfl K, Petri S (2011) Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis. Muscle Nerve 43:636–642.  https://doi.org/10.1002/mus.21936 PubMedCrossRefGoogle Scholar
  153. Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208.  https://doi.org/10.1126/science.1166066 PubMedCrossRefGoogle Scholar
  154. Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–1060.  https://doi.org/10.1016/j.cell.2013.10.033 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497.  https://doi.org/10.1038/nn.3230 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lalmansingh AS, Urekar CJ, Reddi PP (2011) TDP-43 is a transcriptional repressor. The testis-specific mouse acrv1 gene is a TDP-43 target in vivo. J Biol Chem 286:10970–10982.  https://doi.org/10.1074/jbc.M110.166587 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, Cika J, Coughlin M, Messing J, Molliex A et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167(774–788):e17.  https://doi.org/10.1016/j.cell.2016.10.002 Google Scholar
  158. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503.  https://doi.org/10.1038/nm1746 PubMedCrossRefGoogle Scholar
  159. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201:361–372.  https://doi.org/10.1083/jcb.201302044 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Liangzhong L, Yuanyuan W, Yimei L, Jianxing S (2016) ALS-causing mutations significantly perturb the self-assembly and interaction with nucleic acid of the intrinsically disordered prion-like domain of TDP-43. PLoS Biol 14:e1002338.  https://doi.org/10.1371/journal.pbio.1002338 CrossRefGoogle Scholar
  161. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  162. Lin Y, Mori E, Kato M, Xiang S, Wu L, Kwon I, McKnight SL (2016) Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167(789–802):e12.  https://doi.org/10.1016/j.cell.2016.10.003 Google Scholar
  163. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7:e31302.  https://doi.org/10.1371/journal.pone.0031302 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E, EURALS (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385–390.  https://doi.org/10.1136/jnnp.2009.183525 PubMedCrossRefGoogle Scholar
  165. Ludwin SK (1984) Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308:274–275PubMedCrossRefGoogle Scholar
  166. Luk KC, Song C, Brien PO, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy bodylike intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106:20051–20056.  https://doi.org/10.1073/pnas.0908005106 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012a) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953.  https://doi.org/10.1126/science.1227157 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012b) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986.  https://doi.org/10.1084/jem.20112457 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Majcher V, Goode A, James V, Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66:43–52.  https://doi.org/10.1016/j.mcn.2015.01.002 PubMedCrossRefGoogle Scholar
  170. Majumder P, Chu JF, Chatterjee B, Swamy KBS, Shen CKJ (2016) Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 132:721–738PubMedPubMedCentralCrossRefGoogle Scholar
  171. Malaspina A, Puentes F, Amor S (2015) Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. Int Immunol 27:117–129.  https://doi.org/10.1093/intimm/dxu099 PubMedCrossRefGoogle Scholar
  172. March ZM, King OD, Shorter J (2016) Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 1647:9–18.  https://doi.org/10.1016/j.brainres.2016.02.037 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226.  https://doi.org/10.1038/nature08971 PubMedCrossRefGoogle Scholar
  174. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DMA, Hasegawa M (2013) Prion-like spreading of pathological a-synuclein in brain. Brain.  https://doi.org/10.1093/brain/awt037 PubMedPubMedCentralGoogle Scholar
  175. May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM, Grässer FA, Mori K, Kremmer E, Banzhaf-Strathmann J, Mann M, Meissner F, Edbauer D (2014) C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503.  https://doi.org/10.1007/s00401-014-1329-4 PubMedPubMedCentralCrossRefGoogle Scholar
  176. McCann H, Stevens CH, Cartwright H, Halliday GM (2014) α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20:S62–S67.  https://doi.org/10.1016/S1353-8020(13)70017-8 PubMedCrossRefGoogle Scholar
  177. McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GA, Velde CV (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410.  https://doi.org/10.1093/hmg/ddr021 PubMedCrossRefGoogle Scholar
  178. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret J-M, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784PubMedCrossRefGoogle Scholar
  179. Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006) Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol 249:13–18Google Scholar
  180. Mohamed N-V, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37:1939–1948.  https://doi.org/10.1111/ejn.12229 PubMedCrossRefGoogle Scholar
  181. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133.  https://doi.org/10.1016/j.cell.2015.09.015 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Moloney DM, Slaney SF, Oldridge M, Wall SA, Sahlin P, Stenman G, Wilkie AO (1996) Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet 13:48–53PubMedCrossRefGoogle Scholar
  183. Morris JA, Gajdusek DC (1963) Encephalopathy in mice following inoculation of scrapie sheep brain. Nature 197:1084–1086CrossRefGoogle Scholar
  184. Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228.  https://doi.org/10.1016/j.neurobiolaging.2011.06.022 PubMedCrossRefGoogle Scholar
  185. Münch C, Brien JO, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553.  https://doi.org/10.1073/pnas.1017275108 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH et al (2015) ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88:678–690.  https://doi.org/10.1016/j.neuron.2015.10.030 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Nagy M, Fenton WA, Li D, Furtak K, Horwich AL (2016) Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc Natl Acad Sci USA 113:5424–5428.  https://doi.org/10.1073/pnas.1604885113 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Narasimhan S, Guo JL, Changolkar L, Stieber A, McBride JD, Silva LV, He Z, Zhang B, Gathagan RJ, Trojanowski JQ, Lee VMY (2017) Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J Neurosci 37:11406–11423.  https://doi.org/10.1523/JNEUROSCI.1230-17.2017 PubMedCrossRefGoogle Scholar
  189. Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M (2012) Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. J Neurosci 32:8767–8777.  https://doi.org/10.1523/JNEUROSCI.0615-12.2012 PubMedCrossRefGoogle Scholar
  190. Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A, Naujock M, Günther R, Jin M, Stanslowski N, Reinhardt P, Sterneckert J, Frickenhaus M, Pan-Montojo F, Storkebaum E, Poser I, Freischmidt A, Weishaupt JH, Holzmann K, Troost D, Ludolph AC, Boeckers TM, Liebau S, Petri S, Cordes N, Hyman A, Wegner F, Grill S, Weis J (2018) Storch A and Hermann A impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and aggregation formation. Nat Commun.  https://doi.org/10.1038/s41467-017-02299-1 PubMedPubMedCentralGoogle Scholar
  191. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VMY (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRefGoogle Scholar
  192. Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O, Lehmann S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wildtype mouse prion protein. J Virol 74:320–325PubMedPubMedCentralCrossRefGoogle Scholar
  193. Nishimura AL, Shum C, Scotter EL, Abdelgany A, Sardone V, Wright J, Lee YB, Chen HJ, Bilican B, Carrasco M, Maniatis T, Chandran S, Rogelj B, Gallo JM, Shaw CE (2014) Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS ONE 10:e0142287.  https://doi.org/10.1371/journal.pone.0142287 Google Scholar
  194. Nomura T, Watanabe S, Kaneko K, Yamanaka K, Nukina N, Furukawa Y (2014) Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289:1192–1202.  https://doi.org/10.1074/jbc.M113.516492 PubMedCrossRefGoogle Scholar
  195. Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of alpha-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885–34898.  https://doi.org/10.1074/jbc.M110.148460 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DMA, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134.  https://doi.org/10.1016/j.celrep.2013.06.007 PubMedCrossRefGoogle Scholar
  197. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947.  https://doi.org/10.1016/j.molcel.2015.01.013 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU, Bloom GS (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485:651–655.  https://doi.org/10.1038/nature11060 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Ogawa M, Furukawa Y (2014) A seeded propagation of Cu, Zn-superoxide dismutase aggregates in amyotrophic lateral sclerosis. Front Cell Neurosci 8:83.  https://doi.org/10.3389/fncel.2014.00083 PubMedPubMedCentralGoogle Scholar
  200. Okamoto K, Fujita Y, Hoshino E, Tamura Y, Fukuda T, Hasegawa M, Takatama M (2015) An autopsy case of familial amyotrophic lateral sclerosis with a TARDBP Q343R mutation. Neuropathology 35:462–468.  https://doi.org/10.1111/neup.12209 PubMedCrossRefGoogle Scholar
  201. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584.  https://doi.org/10.1146/annurev-biochem-072711-164947 PubMedCrossRefGoogle Scholar
  202. O’Meara ES, Kukull WA, Schellenberg GD, Bowen JD, McCormick WC, Teri L, Pfanschmidt M, Thompson JD, Larson EB (1997) Alzheimer’s disease and history of blood transfusion by apolipoprotein-E genotype. Neuroepidemiology 16:86–93PubMedCrossRefGoogle Scholar
  203. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966PubMedPubMedCentralCrossRefGoogle Scholar
  204. Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, Gille G, Funk RH, Reichmann H (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898.  https://doi.org/10.1038/srep00898 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Parrón T, Requena M, Hernández AF, Alarcón R (2014) Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett 230:157–165.  https://doi.org/10.1016/j.toxlet.2013.11.009 PubMedCrossRefGoogle Scholar
  206. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194.  https://doi.org/10.1016/j.cell.2013.11.028 PubMedCrossRefGoogle Scholar
  207. Passoni M, De Conti L, Baralle FE, Buratti E (2012) UG repeats/TDP-43 interactions near 5´ splice sites exert unpredictable effects on splicing modulation. J Mol Biol 415:46–60.  https://doi.org/10.1016/j.jmb.2011.11.003 PubMedCrossRefGoogle Scholar
  208. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077.  https://doi.org/10.1016/j.cell.2015.07.047 PubMedCrossRefGoogle Scholar
  209. Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA (2017) ATP as a biological hydrotrope. Science 356:753–756.  https://doi.org/10.1126/science.aaf6846 PubMedCrossRefGoogle Scholar
  210. Paumier KL, Luk KC, Manfredsson FP, Kanaan NM, Lipton JW, Collier TJ, Steece-Collier K, Kemp CJ, Celano S, Schulz E, Sandoval IM, Fleming S, Dirr E, Polinski NK, Trojanowski JQ, Lee VM, Sortwell CE (2015) Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol Dis 82:185–199.  https://doi.org/10.1016/j.nbd.2015.06.003 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344.  https://doi.org/10.1038/nature14547.c PubMedCrossRefGoogle Scholar
  212. Pesiridis GS, Lee VMY, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18:R156–R162.  https://doi.org/10.1093/hmg/ddp303 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE, Metterville J, Weiss A, Wightman N, Salameh J, Kim J et al (2015a) Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88:902–909.  https://doi.org/10.1016/j.neuron.2015.11.018 PubMedPubMedCentralCrossRefGoogle Scholar
  214. Peters OM, Ghasemi M, Brown RH (2015b) Emerging mechanisms of molecular pathology in ALS. J Clin Invest 125:1767–1779.  https://doi.org/10.1172/JCI71601 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265PubMedCrossRefGoogle Scholar
  216. Pirooznia SK, Dawson V, Dawson TM (2014) Motor neuron death in ALS—programmed by astrocytes? Neuron 81:961–963.  https://doi.org/10.1016/j.neuron.2014.02.024 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508.  https://doi.org/10.1016/j.cell.2011.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  218. Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893.  https://doi.org/10.1084/jem.20120741 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Prpar Mihevc S, Baralle M, Buratti E, Rogelj B (2016) TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins. Sci Rep 6:33996.  https://doi.org/10.1038/srep33996 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Prudlo J, König J, Schuster C, Kasper E, Büttner A, Teipel S, Neumann M (2016) TDP-43 pathology and cognition in ALS: a prospective clinicopathologic correlation study. Neurology 87:1019–1023.  https://doi.org/10.1212/WNL.0000000000003062 PubMedCrossRefGoogle Scholar
  221. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  222. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308–E5317.  https://doi.org/10.1073/pnas.1514475112 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736.  https://doi.org/10.1016/j.cell.2013.07.038 PubMedCrossRefGoogle Scholar
  224. Rattan SI (2008) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272.  https://doi.org/10.1515/BC.2008.030 PubMedCrossRefGoogle Scholar
  225. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811.  https://doi.org/10.1212/WNL.0b013e3181b6bbbd PubMedPubMedCentralCrossRefGoogle Scholar
  226. Ravits J, Paul P, Jorg C (2007) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68:1571–1575PubMedCrossRefGoogle Scholar
  227. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T, Papadimitriou D, Nagy P, Mitsumoto H, Kariya S, Wichterle H, Henderson CE, Przedborski S (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008.  https://doi.org/10.1016/j.neuron.2014.01.011 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M (2014) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362.  https://doi.org/10.1002/ana.24066 PubMedCrossRefGoogle Scholar
  229. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 15(88):640–651.  https://doi.org/10.1016/j.bcp.2013.12.024 CrossRefGoogle Scholar
  230. Ren P, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225.  https://doi.org/10.1038/ncb1830 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268.  https://doi.org/10.1016/j.neuron.2011.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VM, Brundin P (2016a) Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213:1759–1778.  https://doi.org/10.1084/jem.20160368 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Rey NL, Wesson DW, Brundin P (2016b) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis S0969–9961(16):30294–30297.  https://doi.org/10.1016/j.nbd.2016.12.013 Google Scholar
  234. Romano M, Feiguin F, Buratti E (2016) TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5´UTR. Brain Res 1647:50–56.  https://doi.org/10.1016/j.brainres.2016.02.022 PubMedCrossRefGoogle Scholar
  235. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1996) Mutations of the fibroblast growth factor receptor-3 gene in achondroplasia. Horm Res 45:108–110PubMedCrossRefGoogle Scholar
  236. Rubenstein R, Hui D, Race R, Ju W, Scalici C, Papini M, Kascak R, Carp R (1994) Replication of scrapie strains in vitro and their influence on neuronal functions. AnnNY Acad Sci 724:331–337CrossRefGoogle Scholar
  237. Saleem U, Ejaz S, Ashraf M, Omer MO, Altaf I, Batool Z, Fatima R, Afzal M (2014) Mutagenic and cytotoxic potential of Endosulfan and Lambda-cyhalothrin—in vitro study describing individual and combined effects of pesticides. J Environ Sci (China) 26:1471–1479.  https://doi.org/10.1016/j.jes.2014.05.013 CrossRefGoogle Scholar
  238. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288.  https://doi.org/10.1016/j.neuron.2014.04.047 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Sassa Y, Kataoka N, Inoshima Y, Ishiguro N (2010) Anti-PrP antibodies detected at terminal stage of prion-affected mouse. Cell Immunol 263:212–218.  https://doi.org/10.1016/j.cellimm.2010.03.018 PubMedCrossRefGoogle Scholar
  240. Scotter EL, Chen HJ, Shaw CE (2015) TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12:352–363.  https://doi.org/10.1007/s13311-015-0338-x PubMedPubMedCentralCrossRefGoogle Scholar
  241. Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P III, Herz J, Yu G (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285:6826–6834.  https://doi.org/10.1074/jbc.M109.061846 PubMedCrossRefGoogle Scholar
  242. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56.  https://doi.org/10.1038/nature19323 PubMedCrossRefGoogle Scholar
  243. Shimonaka S, Nonaka T, Suzuki G, Hisanaga S, Hasegawa M (2016) Templated aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) by seeding with TDP-43 peptide fibrils. J Biol Chem 291:8896–8907.  https://doi.org/10.1074/jbc.M115.713552 PubMedPubMedCentralCrossRefGoogle Scholar
  244. Smethurst P, Sidle KCL, Hardy J (2015) Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 41:578–597.  https://doi.org/10.1111/nan.12206 PubMedCrossRefGoogle Scholar
  245. Smethurst P, Newcombe J, Troakes C, Simone R, Chen Y, Patani R, Sidle K (2016) In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis 96:236–247.  https://doi.org/10.1016/j.nbd.2016.08.007 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Smith R, Myers K, Ravits J, Bowser R (2015) Amyotrophic lateral sclerosis: is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 85:576–583.  https://doi.org/10.1016/j.mehy.2015.07.014 PubMedCrossRefGoogle Scholar
  247. Song HL, Shim S, Kim DH, Won SH, Joo S, Kim S, Jeon NL, Yoon SY (2014) β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann Neurol 75:88–97.  https://doi.org/10.1002/ana.24029 PubMedCrossRefGoogle Scholar
  248. Spencer B, Valera E, Rockenstein E, Overk C, Mante M, Adame A, Zago W, Seubert P, Barbour R, Schenk D, Games D, Rissman RA, Masliah E (2017) Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol Commun 5:7.  https://doi.org/10.1186/s40478-016-0410-8 PubMedPubMedCentralCrossRefGoogle Scholar
  249. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227.  https://doi.org/10.1016/j.cell.2011.11.031 PubMedCrossRefGoogle Scholar
  250. Tardivel M, Bégard S, Bousset L, Dujardin S, Coens A, Melki R, Buée L, Colin M (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 4:117PubMedPubMedCentralCrossRefGoogle Scholar
  251. Tashiro T, Sun X, Tsuda M, Komiya Y (1996) Differential axonal transport of soluble and insoluble tau in the rat sciatic nerve. J Neurochem 67:1566–1574PubMedCrossRefGoogle Scholar
  252. Teloni F, Altmeyer M (2015) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44:993–1006.  https://doi.org/10.1093/nar/gkv1383 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC, Lee VM (2014) Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep 7:2054–2065.  https://doi.org/10.1016/j.celrep.2014.05.033 PubMedPubMedCentralCrossRefGoogle Scholar
  254. Tripathi VB, Baskaran P, Shawb CE, Guthrie S (2014) Tar DNA-binding protein-43 (TDP-43) regulates axon growth in vitro and in vivo. Neurobiol Dis 65:25–34.  https://doi.org/10.1016/j.nbd.2014.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  255. Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M, Hosokawa M, Yoshida M, Hatsuta H, Takao M, Saito Y, Murayama S, Akiyama H, Hasegawa M, Mann DM, Tamaoka A (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135:3380–3391.  https://doi.org/10.1093/brain/aws230 PubMedCrossRefGoogle Scholar
  256. Turner MR, Brockington A, Scaber J, Hollinger H, Marsden R, Shaw PJ, Talbot K (2010) Pattern of spread and prognosis in lower limb-onset ALS. Amyotroph Lateral Scler 11:369–373.  https://doi.org/10.3109/17482960903420140 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Uenal H, Rosenbohm A, Kufeldt J, Weydt P, Goder K, Ludolph A, Rothenbacher D, Nagel G, ALS registry Study Group (2014) Incidence and geographical variation of amyotrophic lateral sclerosis (ALS) in Southern Germany–completeness of the ALS registry Swabia. PLoS ONE 9:e93932.  https://doi.org/10.1371/journal.pone.0093932 PubMedPubMedCentralCrossRefGoogle Scholar
  258. Ulusoy A, Rusconi R, Pérez-Revuelta BI, Musgrove RE, Helwig M, Winzen-Reichert B, Di Monte DA (2013) Caudorostral brain spreading of α-synuclein through vagal connections. EMBO Mol Med 5:1119–1127.  https://doi.org/10.1002/emmm.201302475 PubMedCrossRefGoogle Scholar
  259. Utton MA, Connell J, Asuni AA, van Slegtenhorst M, Hutton M, de Silva R, Lees AJ, Miller CC, Anderton BH (2002) The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J Neurosci 22:6394–6400PubMedGoogle Scholar
  260. van Zundert B, Brown RH Jr (2017) Silencing strategies for therapy of SOD1-mediated ALS. Neurosci Lett 636:32–39.  https://doi.org/10.1016/j.neulet.2016.07.059 PubMedCrossRefGoogle Scholar
  261. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211.  https://doi.org/10.1126/science.1165942 PubMedPubMedCentralCrossRefGoogle Scholar
  262. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714.  https://doi.org/10.1038/nrm2970 PubMedCrossRefGoogle Scholar
  263. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM-Y (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71.  https://doi.org/10.1016/j.neuron.2011.08.033 PubMedPubMedCentralCrossRefGoogle Scholar
  264. Vorberg I, Raines A, Story B, Priola SA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189:431–439PubMedCrossRefGoogle Scholar
  265. Wächter N, Storch A, Hermann A (2015) Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms. Amyotroph Lateral Scler Frontotemporal Degener 16:431–441.  https://doi.org/10.3109/21678421.2015.1055275 PubMedCrossRefGoogle Scholar
  266. Walker AK, Spiller KJ, Ge G, Zheng A, Xu Y, Zhou M, Tripathy K, Kwong LK, Trojanowski JQ, Lee VM (2015) Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol 130:643–660.  https://doi.org/10.1007/s00401-015-1460-x PubMedPubMedCentralCrossRefGoogle Scholar
  267. Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139PubMedCrossRefGoogle Scholar
  268. Watts JC, Condello C, Stöhr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc Natl Acad Sci USA 111:10323–10328.  https://doi.org/10.1073/pnas.1408900111 PubMedPubMedCentralCrossRefGoogle Scholar
  269. Weber SC, Brangwynne CP (2015) Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol 25:641–646.  https://doi.org/10.1016/j.cub.2015.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  270. Westergard T, Jensen BK, Wen X, Cai J, Kropf E, Iacovitti L, Pasinelli P, Trotti D (2017) Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–652.  https://doi.org/10.1016/j.celrep.2016.09.032 CrossRefGoogle Scholar
  271. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5:611–618PubMedPubMedCentralCrossRefGoogle Scholar
  272. Wilkin DJ, Szabo JK, Cameron R, Henderson S, Bellus GA, Mack ML, Kaitila I, Loughlin J, Munnich A, Sykes B, Bonaventure J, Francomano CA (1998) Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet 63:711–716PubMedPubMedCentralCrossRefGoogle Scholar
  273. Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978.  https://doi.org/10.1038/nsmb.1643 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56.  https://doi.org/10.1186/1750-1326-7-56 PubMedPubMedCentralCrossRefGoogle Scholar
  275. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G, Duff KE (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870.  https://doi.org/10.1074/jbc.M112.394528 PubMedCrossRefGoogle Scholar
  276. Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, Wozniak DF, Diamond MI, Holtzman DM (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–414.  https://doi.org/10.1016/j.neuron.2013.07.046 PubMedPubMedCentralCrossRefGoogle Scholar
  277. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61.  https://doi.org/10.1038/nature14973 PubMedPubMedCentralCrossRefGoogle Scholar
  278. Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8:888–899.  https://doi.org/10.1007/s11481-013-9489-x PubMedPubMedCentralCrossRefGoogle Scholar
  279. Zhou Q, Lehmer C, Michaelsen M, Mori K, Alterauge D, Baumjohann D, Schludi MH, Greiling J, Farny D, Flatley A, Feederle R, May S, Schreiber F, Arzberger T, Kuhm C, Klopstock T, Hermann A, Haass C, Edbauer D (2017) Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol Med 9:687–702.  https://doi.org/10.15252/emmm.201607054 PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C (2015) Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9:125–135.  https://doi.org/10.1080/19336896.2015.1025189 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of NeurologyStädtisches Klinikum DresdenDresdenGermany
  3. 3.Center for Regenerative Therapies Dresden (CRTD)Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE)DresdenGermany

Personalised recommendations