Journal of Neural Transmission

, Volume 123, Issue 7, pp 797–806 | Cite as

Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain

Neurology and Preclinical Neurological Studies - Original Article


This integrative review frames a general rationale for the use of central thalamic deep brain stimulation (CT-DBS) to support arousal regulation mechanisms in the severely injured brain. The organizing role of the anterior forebrain mesocircuit in recovery mechanisms following widespread deafferentation produced by multi-focal structural brain injuries is emphasized. The mesocircuit model provides the conceptual foundation for the key role of the central thalamus as a privileged node for neuromodulation to support forebrain arousal regulation. In this context, cellular mechanisms arising at the neocortical, striatal, and thalamic population level are considered in the assessment of an individual patient’s capacity for harboring underlying reserve that could be recruited for further recovery. Recent preclinical studies and pilot clinical results are compared to frame the detailed rationale for CT-DBS. Application of CT-DBS across the range of outcomes following severe-to-moderate brain injuries is discussed with the aim of improving consciousness and cognition in patients with non-progressive brain injuries.


Mesocircuit Severe-to-moderate traumatic brain injury Consciousness Intralaminar nuclei Executive function impairment 


Compliance with ethical standards

Conflicts of interest



  1. Baker JL, Ryou JW, Wei XF, Butson CR, Schiff ND, Purpura KP (2011) Modulation of global beta oscillations within the frontal-striatal-central thalamic network during sustained attention. Soc Neurosci Abstr 197:26Google Scholar
  2. Baker JL, Ryou JW, Wei X, Butson C, Schiff ND, Purpura KP (2012) Behavioral modulation with central thalamic deep brain stimulation in non-human primates. Soc Neurosci Abstr 597:14Google Scholar
  3. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379CrossRefPubMedGoogle Scholar
  4. Brown EN, Lydic R, Schiff ND (2010) General Anesthesia, Sleep and Coma. N Engl J Med 363(27):2638–2650CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chatelle C et al (2014) Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem. Front Hum Neurosci 8:917CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cohadon F et al (1985) Deep brain stimulation in cases of prolonged traumatic unconsciousness. In: Lazorthes Y, Upton ARM (eds) Neurostimulation: an overview. Futura Publishers, Mt Kisco, New YorkGoogle Scholar
  7. Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17813–17823CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deliac P, Richer E, Berthomieu J, Paty J, Cohadon F (1993) Electrophysiological evolution of post-traumatic persistent vegetative states under thalamic stimulation. Report on 25 observations. Neurochirurgie 39:293–303PubMedGoogle Scholar
  9. Deschenes M, Bourassa J, Parent A (1996) Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience 72:679–687CrossRefPubMedGoogle Scholar
  10. Dikmen SS, Machamer JE, Powell JM, Temkin NR (2003) Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil 84(10):1449–1457CrossRefPubMedGoogle Scholar
  11. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483CrossRefPubMedGoogle Scholar
  12. Ellender TJ, Harwood J, Kosillo P, Capogna M, Bolam JP (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591(1):257–272CrossRefPubMedGoogle Scholar
  13. Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND (2014) Preservation of Electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol 76:869–879CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fridman EA, Schiff ND (2014) Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 29C:172–177CrossRefGoogle Scholar
  15. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND (2014) Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA 111(17):6473–6478CrossRefPubMedPubMedCentralGoogle Scholar
  16. Giacino J, Fins JJ, Machado A, Schiff ND (2012) Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 15(4):339–349CrossRefPubMedGoogle Scholar
  17. Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA 99(11):7699–7704CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28:364–370CrossRefPubMedGoogle Scholar
  19. Hassler R, Dalle Ore G, Dieckmann G, Bricolo A, Dolce G (1969) Behavioural and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroencephalogr Clin Neurophysiol 27:306–310CrossRefPubMedGoogle Scholar
  20. Hosobuchi Y, Yingling C (1993) The treatment of prolonged coma with neurostimulation. In: Devinsky O, Beric A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Raven Press, Ltd., New York, pp 247–252Google Scholar
  21. Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85(2):331–345CrossRefPubMedGoogle Scholar
  22. Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24(6):919–926CrossRefPubMedGoogle Scholar
  23. Kawai N, Maeda Y, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T (2010) Focal neuronal damage in patients with neuropsychological impairment after diffuse traumatic brain injury: evaluation using 11C-flumazenil positron emission tomography with statistical image analysis. J Neurotrauma 27(12):2131–2138. doi: 10.1089/neu.2010.1464 CrossRefPubMedGoogle Scholar
  24. Kinomura S, Larsson J, Gulyás B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515CrossRefPubMedGoogle Scholar
  25. Levin HS, Li X, McCauley SR, Hanten G, Wilde EA, Swank P (2013) Neuropsychological outcome of mTBI: a principal component analysis approach. J Neurotrauma 30(8):625–632. doi: 10.1089/neu.2012.2627 Epub 2013 Mar 4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ, Pliskin N, Gorelick PB (2010) Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74(7):558–564. doi: 10.1212/WNL.0b013e3181cff5d5 Epub 2010 Jan 20 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N, Lee JH (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 4:e09215. doi: 10.7554/eLife.09215 PubMedPubMedCentralGoogle Scholar
  28. Mair RG, Hembrook JR (2008) Memory enhancement with event-related stimulation of the rostral intralaminar thalamic nuclei. J Neurosci 28:14293–14300CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mair RG, Onos KD, Hembrook JR (2011) Cognitive activation by central thalamic stimulation: the yerkes-dodson law revisited. Dose Response 9(3):313–331 Epub 2010 Aug 20 CrossRefPubMedGoogle Scholar
  30. Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham DI (2006) Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 65:478–488CrossRefPubMedGoogle Scholar
  31. McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13(11):1219–1231CrossRefPubMedGoogle Scholar
  32. McLardy T, Ervin F, Mark V, Scoville W, Sweet W (1968) Attempted inset-electrodes-arousal from traumatic coma: neuropathological findings. Trans Am Neurol Assoc 93:25–30PubMedGoogle Scholar
  33. Narayanan NS, Laubach M (2009) Delay activity in rodent frontal cortex during a simple reaction time task. J Neurophysiol 101(6):2859–2871CrossRefPubMedPubMedCentralGoogle Scholar
  34. Narayanan NS, Cavanagh JF, Frank MJ, Laubach M (2013) Common medial frontal mechanisms of adaptive control in humans and rodents. Nat Neurosci 16(12):1888–1895CrossRefPubMedPubMedCentralGoogle Scholar
  35. Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79(1–2):135–160CrossRefPubMedGoogle Scholar
  36. Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in Neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408CrossRefPubMedGoogle Scholar
  37. Quinkert AW, Pfaff DW (2012) Temporal patterns of deep brain stimulation generated with a true random number generator and the logistic equation: effects on CNS arousal in mice. Behav Brain Res 229(2):349–358. doi: 10.1016/j.bbr.2012.01.025 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Quinkert AW, Schiff ND, Pfaff DW (2010) Temporal patterning of pulses during deep brain stimulation affects central nervous system arousal. Behav Brain Res 214(2):377–385. doi: 10.1016/j.bbr.2010.06.009 Epub 2010 Jun 15 CrossRefPubMedGoogle Scholar
  39. Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–299CrossRefPubMedGoogle Scholar
  40. Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118CrossRefPubMedGoogle Scholar
  41. Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9CrossRefPubMedGoogle Scholar
  42. Schiff ND (2012) Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci 1265:56–68. doi: 10.1111/j.1749-6632.2012.06712.x Epub 2012 Jul 26 CrossRefPubMedGoogle Scholar
  43. Schiff ND (2016) Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: models and predictions. In: MM Monti, WG Sannita (eds) Brain function and responsiveness in disorders of consciousness. doi: 10.1007/978-3-319-21425-2_15
  44. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603CrossRefPubMedGoogle Scholar
  45. Schiff ND, Shah SA, Hudson AE, Nauvel T, Kalik SF, Purpura KP (2013) Gating of attentional effort through the central thalamus. J Neurophysiol 109(4):1152–1163. doi: 10.1152/jn.00317.2011 CrossRefPubMedGoogle Scholar
  46. Shah S, Schiff ND (2010) Central thalamic deep brain stimulation for cognitive neuromodulation: a review of proposed mechanisms and investigational studies. Eur J Neurosci 32(7):1135–1144CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shirvalkar P, Seth M, Schiff ND, Herrera DG (2006) Cognitive enhancement through central thalamic deep brain stimulation. Proc Natl Acad Sci 103(45):17007–17012CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smith AC, Shah SA, Hudson AE, Purpura KP, Victor JD, Brown EN, Schiff ND (2009) A Bayesian statistical analysis of behavioral facilitation associated with deep brain stimulation. J Neurosci Methods 183:267–276CrossRefPubMedPubMedCentralGoogle Scholar
  49. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, New YorkGoogle Scholar
  50. Steriade M et al (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85(5):1969–1985PubMedGoogle Scholar
  51. Sturm V, Kuhner A, Schmitt HP, Assmus H, Stock G (1979) Chronic electrical stimulation of the thalamic unspecific activating system in a patient with coma due to midbrain and upper brain stem infarction. Acta Neurochir (Wien) 47:235–244CrossRefGoogle Scholar
  52. Stuss DT, Knight RT (2013) Principles of frontal lobe function. Oxford University Press, OxfordCrossRefGoogle Scholar
  53. Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, Goodman A, Wang Y, Pfaff DW (2014) Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res 273:123–132CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S (2014) tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology 82(13):1112–1118CrossRefPubMedGoogle Scholar
  55. Tsubokawa T et al (1990) Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj 4(4):315–327CrossRefPubMedGoogle Scholar
  56. Williams ST, Conte MC, Goldfine AM, Norihomme Q, Thonnard M, Gosseries O, Beattie B, Hersh J, Katz DI, Victor JD, Laureys S, Schiff ND (2013) Zolpidem-induced behavioral facilitation in severe brain injury reveals common mechanism of dysfunction and recovery across etiologies. Elife 2:e01157PubMedPubMedCentralGoogle Scholar
  57. Yamamoto T, Katayama Y (2005) Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil 15(3–4):406–413CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Jerold B. Katz Professor of Neurology and Neuroscience, Laboratory of Cognitive Neuromodulation, Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations