Skip to main content

Advertisement

Log in

The rationale for deep brain stimulation in Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer’s disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer’s disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer’s disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADAS-Cog:

Alzheimer’s disease assessment scale-cognitive subscale

DBS:

Deep brain stimulation

FDG:

Fluorodeoxyglucose

MMSE:

Mini-mental state examination

NBM:

Nucleus basalis of Meynert

PET:

Positron emission tomography

QALY:

Quality-adjusted life year

sLORETA:

Standardized low-resolution electromagnetic tomography

STN:

Subthalamic nucleus

References

  • Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94(4):991–1026. doi:10.1152/physrev.00004.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx J Am Soc Exp NeuroTher 1(2):213–225. doi:10.1602/neurorx.1.2.213

    Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 3(3):186–191. doi:10.1016/j.jalz.2007.04.381

    Article  Google Scholar 

  • Browning PG, Gaffan D, Croxson PL, Baxter MG (2010) Severe scene learning impairment, but intact recognition memory, after cholinergic depletion of inferotemporal cortex followed by fornix transection. Cereb Cortex 20(2):282–293. doi:10.1093/cercor/bhp097

    Article  PubMed  Google Scholar 

  • Bruel-Jungerman E, Davis S, Rampon C, Laroche S (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26(22):5888–5893. doi:10.1523/JNEUROSCI.0782-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717. doi:10.1523/JNEUROSCI.2177-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11):4007–4026

    CAS  PubMed  Google Scholar 

  • Chun SK, Sun W, Park JJ, Jung MW (2006) Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem 86(3):322–329. doi:10.1016/j.nlm.2006.05.005

    Article  PubMed  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2(8000):1403

    Article  CAS  PubMed  Google Scholar 

  • Derrick BE, York AD, Martinez JL Jr (2000) Increased granule cell neurogenesis in the adult dentate gyrus following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res 857(1–2):300–307

    Article  CAS  PubMed  Google Scholar 

  • Encinas JM, Hamani C, Lozano AM, Enikolopov G (2011) Neurogenic hippocampal targets of deep brain stimulation. J Comp Neurol 519(1):6–20. doi:10.1002/cne.22503

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. doi:10.1038/3305

    Article  CAS  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Fontaine D, Deudon A, Lemaire JJ, Razzouk M, Viau P, Darcourt J, Robert P (2013) Symptomatic treatment of memory decline in Alzheimer’s disease by deep brain stimulation: a feasibility study. J Alzheimers Dis JAD 34(1):315–323. doi:10.3233/JAD-121579

    PubMed  Google Scholar 

  • Freund HJ, Kuhn J, Lenartz D, Mai JK, Schnell T, Klosterkoetter J, Sturm V (2009) Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Arch Neurol 66(6):781–785. doi:10.1001/archneurol.2009.102

    Article  PubMed  Google Scholar 

  • Grothe M, Heinsen H, Teipel SJ (2012) Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 71(9):805–813. doi:10.1016/j.biopsych.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  • Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, Wennberg RA, Lozano AM (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 63(1):119–123. doi:10.1002/ana.21295

    Article  PubMed  Google Scholar 

  • Hamani C, Stone SS, Garten A, Lozano AM, Winocur G (2011) Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp Neurol 232(1):100–104. doi:10.1016/j.expneurol.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  • Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106(3):222–236

    Article  CAS  PubMed  Google Scholar 

  • Ihl R, Bunevicius R, Frolich L, Winblad B, Schneider LS, Dubois B, Burns A, Thibaut F, Kasper S, Moller HJ, WFSBP Task Force on Mental Disorders in Primary Care, WFSBP Task Force on Dementia (2015) World Federation of Societies of Biological Psychiatry guidelines for the pharmacological treatment of dementias in primary care. Int J Psychiatry Clin Pract 19(1):2–7. doi:10.3109/13651501.2014.961931

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T, Alzheimer’s Disease Working Group (2010) Disease progression meta-analysis model in Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 6(1):39–53. doi:10.1016/j.jalz.2009.05.665

    Article  CAS  Google Scholar 

  • Jessberger S, Gage FH (2014) Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol 24(10):558–563. doi:10.1016/j.tcb.2014.07.003

    Article  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357):1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Saitoh Y, Murayama A, Sugiyama H, Inokuchi K (2010) LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in the adult rat dentate gyrus. Mol Brain 3:13. doi:10.1186/1756-6606-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM (2013) Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol 74(2):223–231. doi:10.1002/ana.23915

    PubMed  Google Scholar 

  • Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, Mai JK, Zilles K, Bauer A, Matusch A, Schulz RJ, Noreik M, Buhrle CP, Maintz D, Woopen C, Haussermann P, Hellmich M, Klosterkotter J, Wiltfang J, Maarouf M, Freund HJ, Sturm V (2015) Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry 20(3):353–360. doi:10.1038/mp.2014.32

    Article  CAS  PubMed  Google Scholar 

  • Laxton AW, Lozano AM (2013) Deep brain stimulation for the treatment of Alzheimer disease and dementias. World Neurosurg 80(3–4):S28.(e21–28). doi:10.1016/j.wneu.2012.06.028

    Google Scholar 

  • Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68(4):521–534. doi:10.1002/ana.22089

    Article  CAS  PubMed  Google Scholar 

  • Laxton AW, Stone S, Lozano AM (2014) The neurosurgical treatment of Alzheimer’s disease: a review. Stereotact Funct Neurosurg 92(5):269–281. doi:10.1159/000364914

    Article  PubMed  Google Scholar 

  • Lo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS, Weiner MW, Jagust WJ, Alzheimer’s Disease Neuroimaging I (2011) Longitudinal change of biomarkers in cognitive decline. Arch Neurol 68(10):1257–1266. doi:10.1001/archneurol.2011.123

    Article  PubMed  Google Scholar 

  • Mayeux R, Sano M (1999) Treatment of Alzheimer’s disease. N Engl J Med 341(22):1670–1679. doi:10.1056/NEJM199911253412207

    Article  CAS  PubMed  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 7(3):263–269. doi:10.1016/j.jalz.2011.03.005

    Article  Google Scholar 

  • Mielke MM, Okonkwo OC, Oishi K, Mori S, Tighe S, Miller MI, Ceritoglu C, Brown T, Albert M, Lyketsos CG (2012) Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 8(2):105–113. doi:10.1016/j.jalz.2011.05.2416

    Article  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94. doi:10.1002/ana.410420114

    Article  CAS  PubMed  Google Scholar 

  • Mirsaeedi-Farahani K, Halpern CH, Baltuch GH, Wolk DA, Stein SC (2015) Deep brain stimulation for Alzheimer disease: a decision and cost-effectiveness analysis. J Neurol 262(5):1191–1197. doi:10.1007/s00415-015-7688-5

    Article  CAS  PubMed  Google Scholar 

  • Palop JJ, Mucke L (2010) Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin? NeuroMol Med 12(1):48–55. doi:10.1007/s12017-009-8097-7

    Article  CAS  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 (Suppl D):5–12

    Google Scholar 

  • Pearson RC, Sofroniew MV, Cuello AC, Powell TP, Eckenstein F, Esiri MM, Wilcock GK (1983) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res 289(1–2):375–379

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC, Jack CR Jr (2009) Imaging and biomarkers in early Alzheimer’s disease and mild cognitive impairment. Clin Pharmacol Ther 86(4):438–441. doi:10.1038/clpt.2009.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaseem A, Snow V, Cross JT Jr, Forciea MA, Hopkins R Jr, Shekelle P, Adelman A, Mehr D, Schellhase K, Campos-Outcalt D, Santaguida P, Owens DK, American College of Physicians/American Academy of Family Physicians Panel on D (2008) Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med 148(5):370–378

    Article  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. doi:10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334(12):752–758. doi:10.1056/NEJM199603213341202

    Article  CAS  PubMed  Google Scholar 

  • Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, McAndrews MP, Tang-Wai DF, Workman CI, Smith GS, Lozano AM (2015) Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul 8(3):645–654. doi:10.1016/j.brs.2014.11.020

    Article  PubMed  Google Scholar 

  • Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563. doi:10.1016/j.bbr.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Deogaonkar M, Rezai A (2015) Assessment of potential targets for deep brain stimulation in patients with Alzheimer’s disease. J Clin Med Res 7(7):501–505. doi:10.14740/jocmr2127w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GS, de Leon MJ, George AE, Kluger A, Volkow ND, McRae T, Golomb J, Ferris SH, Reisberg B, Ciaravino J et al (1992) Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 49(11):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, Vitolo OV, Hedden T, Becker JA, Rentz DM, Selkoe DJ, Johnson KA (2010) Functional alterations in memory networks in early Alzheimer’s disease. NeuroMol Med 12(1):27–43. doi:10.1007/s12017-009-8109-7

    Article  CAS  Google Scholar 

  • Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31(38):13469–13484. doi:10.1523/JNEUROSCI.3100-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM (2008) The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 108(1):132–138. doi:10.3171/JNS/2008/108/01/0132

    Article  PubMed  Google Scholar 

  • Tsivilis D, Vann SD, Denby C, Roberts N, Mayes AR, Montaldi D, Aggleton JP (2008) A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11(7):834–842. doi:10.1038/nn.2149

    Article  CAS  PubMed  Google Scholar 

  • Turnbull IM, McGeer PL, Beattie L, Calne D, Pate B (1985) Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type. A preliminary report. Appl Neurophysiol 48(1–6):216–221

    CAS  PubMed  Google Scholar 

  • Watt AD, Villemagne VL, Barnham KJ (2013) Metals, membranes, and amyloid-beta oligomers: key pieces in the Alzheimer’s disease puzzle? J Alzheimers Dis JAD 33(Suppl 1):S283–S293. doi:10.3233/JAD-2012-129017

    PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215(4537):1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Wilson CR, Baxter MG, Easton A, Gaffan D (2008) Addition of fornix transection to frontal-temporal disconnection increases the impairment in object-in-place memory in macaque monkeys. Eur J Neurosci 27(7):1814–1822. doi:10.1111/j.1460-9568.2008.06140.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zibly Z, Shaw A, Harnof S, Sharma M, Graves C, Deogaonkar M, Rezai A (2014) Modulation of mind: therapeutic neuromodulation for cognitive disability. J Clin Neurosci 21(9):1473–1477. doi:10.1016/j.jocn.2013.11.040

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres M. Lozano.

Ethics declarations

Conflict of interest

AML is a consultant to Medtronic, St. Jude, and Boston Scientific. AML serves on the scientific advisory board of Ceregene, Codman, Neurophage, Aleva and Alcyone Life Sciences. AML is cofounder of Functional Neuromodulation Inc. and hold intellectual property in the field of Deep Brain Stimulation. All other authors declare no relevant conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzadeh, Z., Bari, A. & Lozano, A.M. The rationale for deep brain stimulation in Alzheimer’s disease. J Neural Transm 123, 775–783 (2016). https://doi.org/10.1007/s00702-015-1462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1462-9

Keywords

Navigation