Skip to main content

Advertisement

Log in

Usefulness of external anal sphincter EMG recording for intraoperative neuromonitoring of the sacral roots—a prospective study in dorsal rhizotomy

  • Original Article - Neurosurgical Anatomy
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

In conus medullaris and cauda equina surgery, identification of the sacral nerve roots may be uncertain in spite of their anatomical/radiological landmarks. Mapping the sacral roots by recording the muscular responses to their stimulation may benefit from EMG recording of the External Anal sphincter (EAS) in addition to the main muscular groups of the lower limbs.

Method

In a consecutive series of 27 lumbosacral dorsal rhizotomy (DRh), authors carried out a prospective study on the reliability of the EMG recording of the EAS for identification of the S1 and S2 sacral roots.

Results

An EAS-response was recorded in all the 27 (bilaterally) explored individuals, testifying good sensitivity and selectivity of the method. EAS-responses were obtained in 96.3% of the 54 stimulated sides of the S2 root versus in only 16.66% for the S1 root, so that an absence of response would indicate S1 rather than S2 level. Furthermore, comparison between myotomal distribution of the S1 and S2 roots showed a significant difference (p < 0.00001), so that myotomal profile may help to identify root level.

Conclusions

EMG recording of the EAS can be recommended for current intraoperative neuromonitoring. This simple method also provides—indirectly by extrapolation—information on the sacral motor pathways of the external urethral sphincter (EUS), as the later has the same somatic innervation via the pudendal nerve and related S2, S3, and S4 roots. Method can be helpful not only for DRh, of all varieties, but also for spine surgery, correction of dysraphisms, lipomas and/or tethered cord, and tumor resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott R (2002) Sensory rhizotomy for the treatment of childhood spasticity. In: Deletis V, Shils JL (eds) Neurophysiology in neurosurgery. Academic Press, Elsevier Science, Amsterdam, pp 219–230

    Google Scholar 

  2. Bors E (1952) Segmental and peripheral innervation of the urinary bladder. J Nerv Ment Dis 116(6):572–578

    CAS  PubMed  Google Scholar 

  3. Bors E, Commar AE (1971) Neurological urology: physiology of micturition. Karger S, Basel

    Google Scholar 

  4. Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H (1992) Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery 30(1):72–75

    CAS  PubMed  Google Scholar 

  5. Deletis V, Shils JL, Sala F, Seidel K (2020) Neurophysiology in neurosurgery: a modern approach, 2nd edn. Elsevier, Academic Press, London

    Google Scholar 

  6. Enck P (2004) Functional asymmetry of pelvic floor innervation-myth or fact? Folia Med Cracov 45(1-2):51–61

    PubMed  Google Scholar 

  7. Enck P, Hinninghofen H, Merletti R, Azpiroz F (2005) The external anal sphincter and the role of surface electromyography. Neurogastroenterol Motil 17(1):60–67

    PubMed  Google Scholar 

  8. Fanciullaci F, Kokodoko A, Garavaglia PF, Galli M, Sandri S, Zanollo A (1987) Comparative study of the motor unit potentials of the external urethral sphincter, anal sphincter, and bulbocavernous muscle in normal men. Neurol Urodyn 6:65–69

    Google Scholar 

  9. Fasano VA, Barolat-Romana G, Ivaldi A, Sguazzi A (1976) La radicotomie postérieure fonctionnelle dans le traitement de la spasticité cérébrale. Premieres observations sur la stimulation électrique peropératoire des racines postérieures, et leur utilisation dans le choix des racines ã sectionner. Neurochirurgie 22:23–34

    CAS  PubMed  Google Scholar 

  10. Fasano VA, Broggi G, Zeme S, Lo Russo G, Sguazzi A (1980) Long- term results of posterior functional rhizotomy. Acta Neurochir Suppl (Wien) 30:435–439

    CAS  Google Scholar 

  11. Georgoulis G, Sindou M (2020) Muscle responses to radicular stimulation during lumbo-sacral dorsal rhizotomy for spastic diplegia: Insights to myotome innervation. Clin Neurophysiol 131(5):1075–1086

    PubMed  Google Scholar 

  12. Georgoulis G, Brînzeu A, Sindou M (2018) Dorsal rhizotomy for children with spastic diplegia of cerebral palsy origin: usefulness of intraoperative monitoring. J Neurosurg Pediatr 22(1):89–101

    PubMed  Google Scholar 

  13. Huang JC, Deletis V, Vodusek DB, Abbott R (1997) Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 41(2):411–415

    CAS  PubMed  Google Scholar 

  14. Jahangiri FR, Asdi RA, Tarasiewicz I, Azzubi M (2019) Intraoperative triggered electromyography recordings from the external urethral sphincter muscles during spine surgeries. Cureus 11(6):e4867

    PubMed  PubMed Central  Google Scholar 

  15. James HE, Mulcahy JJ, Walsh JW, Kaplan GW (1979) Use of anal sphincter electromyography during operations on the conus medullaris and sacral nerve roots. Neurosurgery 4(6):521–523

    CAS  PubMed  Google Scholar 

  16. Jünemann KP, Schmidt RA, Melchior H, Tanagho EA (1987) Neuroanatomy and clinical significance of the external urethral sphincter. Urol Int 42(2):132–136

    PubMed  Google Scholar 

  17. Kolhbauer KF, Deletis V (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26:247–253

    Google Scholar 

  18. Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG (2004) Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 621 consecutive cases. J Neurosurg Spine 1(3):243–253

    PubMed  Google Scholar 

  19. Kumar GS, Rajshekhar V, Babu KS (2006) Intraoperative mapping of sacral nervous system (S2-S4). Br J Neurosurg 20:396–402

    PubMed  Google Scholar 

  20. Lang FF, Deletis V, Cohen HW, Velasquez L, Abbott R (1994) Inclusion of the S2 dorsal rootlets in functional posterior rhizotomy for spasticity in children with cerebral palsy. Neurosurgery 34(5):847–853

    CAS  PubMed  Google Scholar 

  21. Marani E, Pijl ME, Kraan MC, Lycklama à Nijeholt GA, Videleer AC (1993) Interconnections of the upper ventral rami of the human sacral plexus: a reappraisal for dorsal rhizotomy in neurostimulation operations. Neurourol Urodyn 12(6):585–598

    CAS  PubMed  Google Scholar 

  22. Mittal S, Farmer JP, Poulin C, Silver K (2001) Reliability of intraoperative electrophysiological monitoring in selective posterior rhizotomy. J Neurosurg 95(1):67–75

    CAS  PubMed  Google Scholar 

  23. Morota N (2019) Clinically practical formula for preoperatively estimating the cutting rate of the spinal nerve root in a functional posterior rhizotomy. Childs Nerv Syst 35(4):665–672

    PubMed  Google Scholar 

  24. Nishida T, Storrs B (1991) Electrophysiological monitoring in selective posterior rhizotomy for spasticity: principle, techniques and interpretation of responses. In: Sindou M, Abbott R, Keravel Y (eds) Neurosurgery for spasticity. A multidisciplinary approach. Springer-Verlag, New-York, pp 159–163

    Google Scholar 

  25. Ogiwara H, Morota N (2014) Pudendal afferents mapping in posterior sacral rhizotomies. Neurosurgery 74(2):171–175

    PubMed  Google Scholar 

  26. Ojemann JG, Park TS, Komanetsky R, Day RA, Kaufman BA (1997) Lack of specificity in electrophysiological identification of lower sacral roots during selective dorsal rhizotomy. J Neurosurg 86(1):28–33

    CAS  PubMed  Google Scholar 

  27. Park TS, Gaffney PE, Kaufman BA, Molleston MC (1993) Selective lumbosacral dorsal rhizotomy immediately caudal to the conus medullaris for cerebral palsy spasticity. Neurosurgery 33(5):929–933

    CAS  PubMed  Google Scholar 

  28. Peacock WJ, Arens LJ, Berman B (1987) Cerebral palsy spasticity. Selective posterior rhizotomy. Pediatr Neurosci 13(2):61–66

    CAS  PubMed  Google Scholar 

  29. Phillips LH II, Park TS (1991) Electrophysiologic mapping of the segmental anatomy of the muscles of the lower extremity. Muscle Nerve 14:1213–1218

    PubMed  Google Scholar 

  30. Podnar S, Rodi Z, Lukanovic A, Trsinar B, Vodusek DB (1999) Standardization of anal sphincter EMG: technique of needle examination. Muscle Nerve 22:400–403

    CAS  PubMed  Google Scholar 

  31. Russell DJ, Rosenbaum PL, Avery LM, Lane Μ (2002) Gross motor function measure (GMFM-66 & GMFM-88). Mac Keith, London

    Google Scholar 

  32. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18(6-7):264–287

    PubMed  Google Scholar 

  33. Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C (2013) Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv 29(9):1611–1624

    Google Scholar 

  34. Schirmer CM, Shils JL, Arle JE, Cosgrove GR, Dempsey PK, Tarlov E, Kim S, Martin CJ, Feltz C, Moul M, Magge S (2011) Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation. J Neurosurg Spine 15(1):64–70

    PubMed  Google Scholar 

  35. Schröder HD (1985) Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. J Auton Nerv Syst 14:23–48

    PubMed  Google Scholar 

  36. Sindou M (1995) Microsurgical DREZotomy (MDT) for pain, spasticity and hyperactive bladder: a 20-yeat experience. Acta Neurochir 137:1–5

    CAS  PubMed  Google Scholar 

  37. Sindou M (2015) Dorsal root entry zone lesions. In: Burchiel KJ (ed) Surgical management of pain, 2nd edn. Thieme, New-York, pp 576–592

    Google Scholar 

  38. Sindou M, Georgoulis G (2015) Keyhole interlaminar dorsal rhizotomy for spastic diplegia in cerebral palsy. Acta Neurochir 157:1187–1196

    PubMed  Google Scholar 

  39. Sindou M, jJeanmonod D (1989) Microsurgical DREZotomy for the treatment of spasticity and pain in the lower limbs. Neurosurgery 24:655–670

    CAS  PubMed  Google Scholar 

  40. Sindou M, Georgoulis G, Mertens P (2014) Neurosurgery for spasticity: a practical guide for treating children and adults. Springer, Wien

    Google Scholar 

  41. Sindou Μ, Brinzeu Α, Georgoulis G (2020) Neurosurgical lesioning-procedures for spasticity and focal dystonia. In: Deletis V, Shils JL, Sala F, Seidel K (eds) Neurophysiology in neurosurgery: a modern approach, 2nd edn. Elsevier, Academic Press, London, pp 499–514

    Google Scholar 

  42. Sindou M, Georgoulis G, Brinzeu A (2020) Neurosurgical lesioning procedures in spinal cord and dorsal root entry zone for pain. In: Deletis V, Shils JL, Sala F, Seidel K (eds) Neurophysiology in neurosurgery: a modern approach, 2nd edn. Elsevier, Academic Press, London, pp 535–550

    Google Scholar 

  43. Steinbok P, Tidemann AJ, Miller S, Mortenson P, Bowen-Roberts T (2009) Electrophysiologically guided versus non-electrophysiologically guided selective dorsal rhizotomy for spastic cerebral palsy: a comparison of outcomes. Childs Nerv Syst 25(9):1091–1096

    PubMed  Google Scholar 

  44. Voduzek DB, Deletis V (2020) Intraoperative neurophysiological monitoring of the sacral nervous system. In: Deletis V, Shils JL, Sala F, Seidel K (eds) Neurophysiology in neurosurgery: a modern approach, 2nd edn. Elsevier, Academic Press, London, pp 87–99

    Google Scholar 

  45. Wiesner A, Jost WH (2020) EMG of the external anal sphincter: needle is superior to surface electrode. Dis Colon Rectum 43:116–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgoulis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (name of institute/committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurosurgical Anatomy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindou, M., Joud, A. & Georgoulis, G. Usefulness of external anal sphincter EMG recording for intraoperative neuromonitoring of the sacral roots—a prospective study in dorsal rhizotomy. Acta Neurochir 163, 479–487 (2021). https://doi.org/10.1007/s00701-020-04610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-020-04610-4

Keywords

Navigation