Skip to main content
Log in

Augmented reality in intradural spinal tumor surgery

  • Original Article - Spine - Other
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Microscope-based augmented reality (AR) is commonly used in cranial surgery; however, until recently, this technique was not implemented for spinal surgery. We prospectively investigated, how AR can be applied for intradural spinal tumor surgery.

Methods

For ten patients with intradural spinal tumors (ependymoma, glioma, hemangioblastoma, meningioma, and metastasis), AR was provided by head-up displays (HUDs) of operating microscopes. User-independent automatic AR registration was established by low-dose intraoperative computed tomography. The objects visualized by AR were segmented in preoperative imaging data; non-linear image registration was applied to consider spine flexibility.

Results

In all cases, AR supported surgery by visualizing the tumor outline and other relevant surrounding structures. The overall AR registration error was 0.72 ± 0.24 mm (mean ± standard deviation), a close matching of visible tumor outline and AR visualization was observed for all cases. Registration scanning resulted in a low effective dose of 0.22 ± 0.16 mSv for cervical and 1.68 ± 0.61 mSv for thoracic lesions. The mean HUD AR usage in relation to microscope time was 51.6 ± 36.7%. The HUD was switched off and turned on again in a range of 2 to 17 times (5.7 ± 4.4 times). Independent of the status of the HUD, the AR visualization was displayed on monitors throughout surgery.

Conclusions

Microscope-based AR can be reliably applied to intradural spinal tumor surgery. Automatic AR registration ensures high precision and provides an intuitive visualization of the extent of the tumor and surrounding structures. Given this setting, all advanced multi-modality options of cranial AR can also be applied to spinal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abe Y, Sato S, Kato K, Hyakumachi T, Yanagibashi Y, Ito M, Abumi K (2013) A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine 19:492–501. https://doi.org/10.3171/2013.7.SPINE12917

    Article  PubMed  Google Scholar 

  2. Agten CA, Dennler C, Rosskopf AB, Jaberg L, Pfirrmann CWA, Farshad M (2018) Augmented reality-guided lumbar facet joint injections. Investig Radiol 53:495–498. https://doi.org/10.1097/RLI.0000000000000478

    Article  Google Scholar 

  3. Burstrom G, Nachabe R, Persson O, Edstrom E, Terander AE (2019) Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000003006

  4. Cabrilo I, Bijlenga P, Schaller K (2014) Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir 156:1769–1774. https://doi.org/10.1007/s00701-014-2183-9

    Article  PubMed  Google Scholar 

  5. Cabrilo I, Sarrafzadeh A, Bijlenga P, Landis BN, Schaller K (2014) Augmented reality-assisted skull base surgery. Neurochirurgie 60:304–306. https://doi.org/10.1016/j.neuchi.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Carl B, Bopp M, Chehab S, Bien S, Nimsky C (2018) Preoperative 3-dimensional angiography data and intraoperative real-time vascular data integrated in microscope-based navigation by automatic patient registration applying intraoperative computed tomography. World Neurosurg 113:E414–E425. https://doi.org/10.1016/j.wneu.2018.02.045

    Article  PubMed  Google Scholar 

  7. Carl B, Bopp M, Sass B, Voellger B, Nimsky C (2019) Implementation of augmented reality support in spine surgery. Eur Spine J. https://doi.org/10.1007/s00586-019-05969-4

  8. Carl B, Bopp M, Voellger B, Sass B, Nimsky C (2019) Augmented reality in transsphenoidal surgery. World Neurosurg 125:E873–E883. https://doi.org/10.1016/j.wneu.2019.01.202

  9. Coelho G, Defino HLA (2018) The role of mixed reality simulation for surgical training in spine: phase 1 validation. Spine (Phila Pa 1976) 43:1609–1616. https://doi.org/10.1097/BRS.0000000000002856

    Article  Google Scholar 

  10. Deib G, Johnson A, Unberath M, Yu K, Andress S, Qian L, Osgood G, Navab N, Hui F, Gailloud P (2018) Image guided percutaneous spine procedures using an optical see-through head mounted display: proof of concept and rationale. J Neurointerv Surg 10:1187–1191. https://doi.org/10.1136/neurintsurg-2017-013649

    Article  PubMed  Google Scholar 

  11. Elmi-Terander A, Burstrom G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, Stahl F, Charalampidis A, Soderman M, Holmin S, Babic D, Jenniskens I, Edstrom E, Gerdhem P (2019) Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine (Phila Pa 1976) 44:517–525. https://doi.org/10.1097/BRS.0000000000002876

    Article  Google Scholar 

  12. Fahlbusch R, Nimsky C, Ganslandt O, Steinmeier R, Buchfelder M, Huk W (1998) The Erlangen concept of image guided surgery. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR'98. Elsevier Science B.V., Amsterdam, pp 583–588

    Google Scholar 

  13. Fida B, Cutolo F, di Franco G, Ferrari M, Ferrari V (2018) Augmented reality in open surgery. Updat Surg 70:389–400. https://doi.org/10.1007/s13304-018-0567-8

    Article  Google Scholar 

  14. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56:291. https://doi.org/10.1227/01.NEU.0000156782.14538.78

    Article  PubMed  Google Scholar 

  15. Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R (2019) Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg 14:525–535. https://doi.org/10.1007/s11548-018-1814-7

    Article  PubMed  Google Scholar 

  16. Greffier J, Pereira FR, Viala P, Macri F, Beregi JP, Larbi A (2017) Interventional spine procedures under CT guidance: how to reduce patient radiation dose without compromising the successful outcome of the procedure? Phys Med 35:88–96. https://doi.org/10.1016/j.ejmp.2017.02.016

    Article  PubMed  Google Scholar 

  17. Kelly PJ, Alker GJ Jr, Goerss S (1982) Computer-assisted stereotactic microsurgery for the treatment of intracranial neoplasms. Neurosurgery 10:324–331

    Article  CAS  PubMed  Google Scholar 

  18. King AP, Edwards PJ, Maurer CR, de Cunha DA, Hawkes DJ, Hill DLG, Gaston RP, Fenlon MR (1999) A system for microscope-assisted guided interventions. Stereotact Funct Neurosurg 72:107–111. https://doi.org/10.1159/000029708

    Article  CAS  PubMed  Google Scholar 

  19. Kiya N, Dureza C, Fukushima T, Maroon JC (1997) Computer navigational microscope for minimally invasive neurosurgery. Minim Invasive Neurosurg 40:110–115. https://doi.org/10.1055/s-2008-1053429

    Article  CAS  PubMed  Google Scholar 

  20. Kosterhon M, Gutenberg A, Kantelhardt SR, Archavlis E, Giese A (2017) Navigation and image injection for control of bone removal and osteotomy planes in spine surgery. Oper Neurosurg (Hagerstown) 13:297–304. https://doi.org/10.1093/ons/opw017

    Article  Google Scholar 

  21. Kwan K, Schneider JR, Du V, Falting L, Boockvar JA, Oren J, Levine M, Langer DJ (2019) Lessons learned using a high-definition 3-dimensional exoscope for spinal surgery. Oper Neurosurg (Hagerstown) 16:619–625. https://doi.org/10.1093/ons/opy196

    Article  Google Scholar 

  22. Liebmann F, Roner S, von Atzigen M, Scaramuzza D, Sutter R, Snedeker J, Farshad M, Furnstahl P (2019) Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg 14:1157–1165. https://doi.org/10.1007/s11548-019-01973-7

  23. Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H (2017) Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg 12:2205–2215. https://doi.org/10.1007/s11548-017-1652-z

    Article  PubMed  Google Scholar 

  24. Mascitelli JR, Bederson JB (2018) In reply: navigation-linked heads-up display in intracranial surgery: early experience. Oper Neurosurg (Hagerstown) 14:E73. https://doi.org/10.1093/ons/opy049

    Article  Google Scholar 

  25. Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V (2017) Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 40:537–548. https://doi.org/10.1007/s10143-016-0732-9

    Article  PubMed  Google Scholar 

  26. Molina CA, Theodore N, Ahmed AK, Westbroek EM, Mirovsky Y, Harel R, Orru E, Khan M, Witham T, Sciubba DM (2019) Augmented reality-assisted pedicle screw insertion: a cadaveric proof-of-concept study. J Neurosurg Spine:1–8. https://doi.org/10.3171/2018.12.SPINE181142

  27. Nakamura M, Tamaki N, Tamura S, Yamashita H, Hara Y, Ehara K (2000) Image-guided microsurgery with the Mehrkoordinaten manipulator system for cerebral arteriovenous malformations. J Clin Neurosci 7(Suppl 1):10–13. https://doi.org/10.1054/jocn.2000.0702

    Article  PubMed  Google Scholar 

  28. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079. https://doi.org/10.1097/00006123-200011000-00008

    Article  CAS  PubMed  Google Scholar 

  29. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:292–303. https://doi.org/10.1227/01.NEU.0000204726.00088.6D

    Article  Google Scholar 

  30. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255. https://doi.org/10.1097/00006123-199906000-00044

    Article  CAS  PubMed  Google Scholar 

  31. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P (2016) Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg 40:419–426. https://doi.org/10.1007/s00268-015-3229-8

    Article  PubMed  Google Scholar 

  32. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65:545–549. https://doi.org/10.3171/jns.1986.65.4.0545

    Article  CAS  PubMed  Google Scholar 

  33. Sarwahi V, Payares M, Wendolowski S, Maguire K, Thornhill B, Lo YT, Amaral TD (2017) Low-dose radiation 3D intraoperative imaging how low can we go? An O-arm, CT scan, cadaveric study. Spine 42:E1311–E1317. https://doi.org/10.1097/Brs.0000000000002154

    Article  PubMed  Google Scholar 

  34. Su AW, Luo TD, McIntosh AL, Schueler BA, Winkler JA, Stans AA, Larson AN (2016) Switching to a pediatric dose O-arm protocol in spine surgery significantly reduced patient radiation exposure. J Pediatr Orthop 36:621–626. https://doi.org/10.1097/BPO.0000000000000504

    Article  PubMed  Google Scholar 

  35. Umebayashi D, Yamamoto Y, Nakajima Y, Fukaya N, Hara M (2018) Augmented reality visualization-guided microscopic spine surgery: transvertebral anterior cervical foraminotomy and posterior foraminotomy. J Am Acad Orthop Surg Glob Res Rev 2:e008. https://doi.org/10.5435/JAAOSGlobal-D-17-00008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoon JW, Chen RE, Han PK, Si P, Freeman WD, Pirris SM (2017) Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot 13:e1770. https://doi.org/10.1002/rcs.1770

    Article  Google Scholar 

  37. Zhao J, Liu Y, Fan M, Liu B, He D, Tian W (2018) Comparison of the clinical accuracy between point-to-point registration and auto-registration using an active infrared navigation system. Spine (Phila Pa 1976) 43:E1329–E1333. https://doi.org/10.1097/BRS.0000000000002704

    Article  Google Scholar 

Download references

Acknowledgments

We thank J.-W. Bartsch for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Carl.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript, except that B. Carl and Ch. Nimsky have received speaker fees from Brainlab.

Ethical standards

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. We obtained ethics approval for prospective archiving clinical and technical data applying intraoperative imaging and navigation (study no. 99/18). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spine - Other

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carl, B., Bopp, M., Saß, B. et al. Augmented reality in intradural spinal tumor surgery. Acta Neurochir 161, 2181–2193 (2019). https://doi.org/10.1007/s00701-019-04005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-019-04005-0

Keywords

Navigation