Acta Neurochirurgica

, Volume 161, Issue 5, pp 985–993 | Cite as

Diffusion-weighted magnetic resonance imaging for detection of postoperative intracranial pyogenic abscesses in neurosurgery

  • Christoph Schwartz
  • Markus Lenski
  • Alexander Romagna
  • Christian Schichor
  • Joerg-Christian Tonn
  • Hartmut Brueckmann
  • Hendrik Janssen
  • Thomas Liebig
  • Robert Forbrig
  • Niklas ThonEmail author
Original Article - Infection
Part of the following topical collections:
  1. Infection



Diffusion-weighted magnetic resonance imaging (MRI-DWI) is the modality of choice for detecting intracranial abscesses; however, it is unclear whether prior brain surgery has an influence on its diagnostic value. Thus, we assessed the robustness of MRI-DWI and determination of an ADC cutoff value for detecting intracranial abscesses in patients who underwent brain surgery.


We retrospectively evaluated 19 patients prior to surgery for postoperative supratentorial parenchymal abscesses by means of MRI-DWI. Forty randomly selected patients with routine postoperative MRI-DWI were used for comparative analyses. Clinical and serum biomarkers (C-reactive protein, interleukin-6, white blood cell count) as well as from results of early postoperative imaging findings (computed tomography and/or MRI scan) were recorded. Additionally, ADC values, T1±gadolinium, and T2/fluid-attenuated inversion recovery sequences were investigated.


After initial surgery, early postoperative control imaging showed evidence of hemorrhage and/or hemostatic agents within the resection cavity in 10/19 patients of the abscess group and in 16/40 patients of the control group. No postoperative ischemia was detected. Neither hemostatic agents nor blood affected the mean ADC values in both the reference group (blood 2.96 ± 0.22 × 10−3 mm2/s vs. no blood 2.95 ± 0.26 × 10−3 mm2/s, p = 0.076) and in the abscess group (blood 0.87 ± 0.07 × 10−3 mm2/s vs. no blood 0.76 ± 0.06 × 10−3 mm2/s, p = 0.128). The mean ADC value within the resection cavity was significantly lower in the abscess group (1.5 T 0.88 ± 0.41 vs. 2.88 ± 0.20 × 10−3 mm2/s, p < .01; 3.0 T 0.75 ± 0.24 vs. 3.02 ± 0.26 × 10−3 mm2/s, p < 0.01). The optimal ADC cut-off for the differentiation of an abscess from normal postoperative findings was found at 1.87 × 10−3 mm2/s (area-under-the-curve 1.0, sensitivity = 100%, specificity = 100%). Moreover, no differences between the abscess patients and the control group were seen with respect to the analyzed serum biomarkers.


MRI-DWI provides a robust tool to discriminate postoperative abscess formation from normal postoperative changes.


Apparent diffusion coefficient Diffusion-weighted MRI Neurosurgery Pyogenic intracranial abscess Revision surgery Serum biomarker 



Apparent diffusion coefficient


Computed tomography


C-reactive protein


Cerebrospinal fluid


Diffusion-weighted imaging




Magnetic resonance imaging


White blood cell count


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (ethics committee of the Ludwig-Maximilians-University Munich, Germany) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.


  1. 1.
    Anthofer J, Wester M, Zeman F, Brawanski A, Schebesch KM (2016) Case-control study of patients at risk of medical complications after elective craniotomy. World Neurosurg 91:58–65CrossRefGoogle Scholar
  2. 2.
    Asadullah K, Woiciechowsky C, Döcke WD, Egerer K, Kox WJ, Vogel S, Sterry W, Volk HD (1995) Very low monocytic HLA-DR expression indicates high risk of infection--immunomonitoring for patients after neurosurgery and patients during high dose steroid therapy. Eur J Emerg Med 2:184–190CrossRefGoogle Scholar
  3. 3.
    Belli G, Busoni S, Ciccarone A, Coniglio A, Esposito M, Giannelli M, Mazzoni LN, Nocetti L, Sghedoni R, Tarducci R, Zatelli G, Anoja RA, Belmonte G, Bertolino N, Betti M, Biagini C, Ciarmatori A, Cretti F, Fabbri E, Fedeli L, Filice S, Fulcheri CP, Gasperi C, Mangili PA, Mazzocchi S, Meliadò G, Morzenti S, Noferini L, Oberhofer N, Orsingher L, Paruccini N, Princigalli G, Quattrocchi M, Rinaldi A, Scelfo D, Freixas GV, Tenori L, Zucca I, Luchinat C, Gori C, Gobbi G, Italian Association of Physics in Medicine (AIFM) Working Group on MR Intercomparison (2016) Quality assurance multicenter comparison of different MR scanners for quantitative diffusion-weighted imaging. J Magn Reson Imaging 43:213–219CrossRefGoogle Scholar
  4. 4.
    Berndt M, Lange N, Ryang YM, Meyer B, Zimmer C, Hapfelmeier A, Wantia N, Gempt J, Lummel N (2018) Value of diffusion-weighted imaging in the diagnosis of postoperative intracranial infections. World Neurosurg 118:e245–e253CrossRefGoogle Scholar
  5. 5.
    Brouwer MC, Coutinho JM, van de Beek D (2014a) Clinical characteristics and outcome of brain abscess: systematic review and meta-analysis. Neurology 82:806–813CrossRefGoogle Scholar
  6. 6.
    Brouwer MC, Tunkel AR, McKhann GM 2nd, van de Beek D (2014b) Brain abscess. N Engl J Med 371:447–456CrossRefGoogle Scholar
  7. 7.
    Bükte Y, Paksoy Y, Genç E, Uca AU (2005) Role of diffusion-weighted MR in differential diagnosis of intracranial cystic lesions. Clin Radiol 60:375–383CrossRefGoogle Scholar
  8. 8.
    Castillo M, Mukherji SK (2000) Diffusion-weighted imaging in the evaluation of intracranial lesions. Semin Ultrasound CT MR 21:405–416CrossRefGoogle Scholar
  9. 9.
    Chang SC, Lai PH, Chen WL, Weng HH, Ho JT, Wang JS, Chang CY, Pan HB, Yang CF (2002) Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging 26:227–236CrossRefGoogle Scholar
  10. 10.
    Ebisu T, Tanaka C, Umeda M, Kitamura M, Naruse S, Higuchi T, Ueda S, Sato H (1996) Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 14:1113–1116CrossRefGoogle Scholar
  11. 11.
    Farrell CJ, Hoh BL, Pisculli ML, Henson JW, Barker FG 2nd, Curry WT Jr (2008) Limitations of diffusion-weighted imaging in the diagnosis of postoperative infections. Neurosurgery 62:577–583CrossRefGoogle Scholar
  12. 12.
    Golebiowski A, Drewes C, Gulati S, Jakola AS, Solheim O (2015) Is duration of surgery a risk factor for extracranial complications and surgical site infections after intracranial tumor operations? Acta Neurochir 157:235–240CrossRefGoogle Scholar
  13. 13.
    Grech-Sollars M, Hales PW, Miyazaki K, Raschke F, Rodriguez D, Wilson M, Gill SK, Banks T, Saunders DE, Clayden JD, Gwilliam MN, Barrick TR, Morgan PS, Davies NP, Rossiter J, Auer DP, Grundy R, Leach MO, Howe FA, Peet AC, Clark CA (2015) Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed 28:468–485CrossRefGoogle Scholar
  14. 14.
    Grimstad IA, Hirschberg H, Rootwelt K (1992) 99mTc-hexamethylpropyleneamine oxime leukocyte scintigraphy and C-reactive protein levels in the differential diagnosis of brain abscesses. J Neurosurg 77:732–736CrossRefGoogle Scholar
  15. 15.
    Kang BK, Na DG, Ryoo JW, Byun HS, Roh HG, Pyeun YS (2001) Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol 2:183–191CrossRefGoogle Scholar
  16. 16.
    Kim YJ, Moon KS, Kim SK, Kang SJ, Lee KH, Jang WY, Jung TY, Kim IY, Jung S (2014) The difference in diffusion-weighted imaging with apparent diffusion coefficient between spontaneous and postoperative intracranial infection. Br J Neurosurg 28:765–770CrossRefGoogle Scholar
  17. 17.
    Korinek AM (1997) Risk factors for neurosurgical site infections after craniotomy: a prospective multicenter study of 2944 patients. The French Study Group of Neurosurgical Infections, the SEHP, and the C-CLIN Paris-Nord. Service Epidémiologie Hygiène et Prévention. Neurosurgery 41:1073–1079CrossRefGoogle Scholar
  18. 18.
    Kourbeti IS, Vakis AF, Ziakas P, Karabetsos D, Potolidis E, Christou S, Samonis G (2015) Infections in patients undergoing craniotomy: risk factors associated with post-craniotomy meningitis. J Neurosurg 122:1113–1119CrossRefGoogle Scholar
  19. 19.
    Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB, Yang CF (2002) Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1369–1377Google Scholar
  20. 20.
    Levy RM (1994) Brain abscess and subdural empyema. Curr Opin Neurol 7:223–228CrossRefGoogle Scholar
  21. 21.
    Leuthardt EC, Wippold FJ 2nd, Oswood MC, Rich KM (2002) Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol 58:395–402CrossRefGoogle Scholar
  22. 22.
    Lotan E, Hoffmann C, Fardman A, Ziv-Baran T, Komisar O, Harnof S (2016) Postoperative versus spontaneous intracranial abscess: diagnostic value of the apparent diffusion coefficient for accurate assessment. Radiology 281:168–174CrossRefGoogle Scholar
  23. 23.
    Nadal Desbarats L, Herlidou S, de Marco G, Gondry-Jouet C, Le Gars D, Deramond H, Idy-Peretti I (2003) Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images. Magn Reson Imaging 21:645–650CrossRefGoogle Scholar
  24. 24.
    Neidert MC, Karlin K, Actor B, Regli L, Bozinov O, Burkhardt JK (2015) Preoperative C-reactive protein predicts the need for repeated intracerebral brain abscess drainage. Clin Neurol Neurosurg 131:26–30CrossRefGoogle Scholar
  25. 25.
    Ogura A, Tamura T, Ozaki M, Doi T, Fujimoto K, Miyati T, Ito Y, Maeda F, Tarewaki H, Takahashi M Apparent diffusion coefficient value is not dependent on magnetic resonance systems and field strength under fixed imaging parameters in brain. J Comput Assist Tomogr 39:760–765Google Scholar
  26. 26.
    Rana S, Albayram S, Lin DD, Yousem DM (2002) Diffusion-weighted imaging and apparent diffusion coefficient maps in a case of intracerebral abscess with ventricular extension. AJNR Am J Neuroradiol 23:109–112Google Scholar
  27. 27.
    Sener RN (2001) Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph 25:299–326CrossRefGoogle Scholar
  28. 28.
    Toh CH, Wei KC, Ng SH, Wan YL, Lin CP, Castillo M (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol 32:1646–1651CrossRefGoogle Scholar
  29. 29.
    Tomar V, Yadav A, Rathore RK, Verma S, Awasthi R, Bharadwaj V, Ojha BK, Prasad KN, Gupta RK (2011) Apparent diffusion coefficient with higher b-value correlates better with viable cell count quantified from the cavity of brain abscess. AJNR Am J Neuroradiol 32:2120–2125CrossRefGoogle Scholar
  30. 30.
    Valentini LG, Casali C, Chatenoud L, Chiaffarino F, Uberti-Foppa C, Broggi G (2008) Surgical site infections after elective neurosurgery: a survey of 1747 patients. Neurosurgery 62:88–95CrossRefGoogle Scholar
  31. 31.
    Wendl CM, Müller S, Eiglsperger J, Fellner C, Jung EM, Meier JK (2015) Diffusion-weighted imaging in oral squamous cell carcinoma using 3 tesla MRI: is there a chance for preoperative discrimination between benign and malignant lymph nodes in daily clinical routine? Acta Radiol 57:939–946CrossRefGoogle Scholar
  32. 32.
    Yu Y, Li HJ (2017) Diagnostic and prognostic value of procalcitonin for early intracranial infection after craniotomy. Braz J Med Biol Res 50:e6021Google Scholar
  33. 33.
    Zhan R, Zhu Y, Shen Y, Shen J, Tong Y, Yu H, Wen L (2014) Post-operative central nervous system infections after cranial surgery in China: incidence, causative agents, and risk factors in 1,470 patients. Eur J Clin Microbiol Infect Dis 33:861–866CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Christoph Schwartz
    • 1
    • 2
  • Markus Lenski
    • 1
  • Alexander Romagna
    • 1
    • 2
    • 3
  • Christian Schichor
    • 1
  • Joerg-Christian Tonn
    • 1
  • Hartmut Brueckmann
    • 4
  • Hendrik Janssen
    • 4
    • 5
  • Thomas Liebig
    • 4
  • Robert Forbrig
    • 4
  • Niklas Thon
    • 1
    Email author
  1. 1.Department of Neurosurgery, University HospitalLMU MunichMunichGermany
  2. 2.Department of NeurosurgeryChristian-Doppler-Klinik, Paracelsus Medical University SalzburgSalzburgAustria
  3. 3.Division of NeurosurgerySt. Michael’s Hospital, University of TorontoTorontoCanada
  4. 4.Institute of Neuroradiology, University HospitalLMU MunichMunichGermany
  5. 5.Department of NeuroradiologyKlinikum IngolstadtIngolstadtGermany

Personalised recommendations