Advertisement

Acta Neurochirurgica

, Volume 160, Issue 3, pp 567–578 | Cite as

The impact of nTMS mapping on treatment of brain AVMs

  • Sebastian Ille
  • Thomas Picht
  • Ehab Shiban
  • Bernhard Meyer
  • Peter Vajkoczy
  • Sandro M. Krieg
Original Article - Vascular

Abstract

Background

The treatment of brain arteriovenous malformations (BAVMs) is still contrarily discussed. Despite the debatable results of the ARUBA trial, most BAVMs still require treatment depending on the Spetzler-Martin (SM) grading. Since size is measurable and venous drainage is visible, the determination of eloquence is comparably crucial but not fully objective. The present bicentric cohort study aims to examine the influence of preoperative navigated transcranial magnetic stimulation (nTMS) motor and language mapping data on decision-making for or against surgical treatment of BAVMs.

Methods

The influence of data from nTMS on decision-making for or against treatment of BAVMs was examined by confirming/falsifying presumed motor or language eloquence.

Results

The results of nTMS mappings changed the SM grading in nine cases. In six cases, the SM grading changed to a lower grade (= falsified eloquence); in three cases, the SM grading changed to a higher grade due to nTMS mappings (= unexpected eloquence). Out of all 34 cases, indication for surgery was supported by nTMS mappings in 15 cases (7 motors, 8 languages). In six cases, the decision against surgery was made based on nTMS mappings (three motors, three languages).

Conclusion

In 21 of 34 cases (62%), nTMS was a supportive argument. We could show that nTMS motor and language data can be used for a more objective decision-making regarding the treatment of BAVMs and for a more detailed SM grading regarding the rating of eloquence.

Keywords

Brain AVM Motor and language mapping nTMS Spetzler-Martin grading 

Abbreviations

3D

three-dimensional

BAVM

brain arteriovenous malformations

DCS

direct cortical stimulation

DSA

digital subtraction angiography

DTI FT

diffusion tensor imaging fiber tracking

DT

display time

fMRI

functional magnetic resonance imaging

IONM

intraoperative neuromonitoring

IPI

interpicture interval

MEG

magneto-encephalography

MEP

motor evoked potential

nTMS

navigated transcranial magnetic stimulation

PTI

picture-to-trigger interval

rMT

resting motor threshold

rTMS

repetitive nTMS

SM

Spetzler-Martin

SRS

stereotactic radiosurgery

SEP

somatosensory evoked potential

TR

repetition time

TE

echo time

Notes

Funding information

The study was financed by institutional grants from the Departments of Neurosurgery and the Sections of Neuroradiology of the Klinikum rechts der Isar, Technische Universität München, Munich, and Charité-Universitätsmedizin Berlin.

Compliance with ethical standards

Conflict of interest

TP, BM, PV, and SK are consultants for Brainlab AG (Munich, Germany). TP and SK are consultants for Nexstim Plc (Helsinki, Finland). All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in the study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients included in the study.

References

  1. 1.
    Babajani-Feremi A, Narayana S, Rezaie R, Choudhri AF, Fulton SP, Boop FA, Wheless JW, Papanicolaou AC (2016) Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clin Neurophysiol 127:1822–1836CrossRefPubMedGoogle Scholar
  2. 2.
    Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G (2010) Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang 115:101–112CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Davidson AS, Morgan MK (2010) How safe is arteriovenous malformation surgery? A prospective, observational study of surgery as first-line treatment for brain arteriovenous malformations. Neurosurgery 66:498–504 discussion 504-495CrossRefPubMedGoogle Scholar
  4. 4.
    De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol: Off J Am Soc Clin Oncol 30:2559–2565CrossRefGoogle Scholar
  5. 5.
    Frey D, Schilt S, Strack V, Zdunczyk A, Rosler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16:1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T (2012) A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. NeuroImage 62:1600–1609CrossRefPubMedGoogle Scholar
  7. 7.
    Gabarros A, Young WL, McDermott MW, Lawton MT (2011) Language and motor mapping during resection of brain arteriovenous malformations: indications, feasibility, and utility. Neurosurgery 68:744–752CrossRefPubMedGoogle Scholar
  8. 8.
    Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C (2010) Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 66:113–120CrossRefPubMedGoogle Scholar
  9. 9.
    Hamilton MG, Spetzler RF (1994) The prospective application of a grading system for arteriovenous malformations. Neurosurgery 34:2–6 discussion 6-7PubMedGoogle Scholar
  10. 10.
    Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Boeckh-Behrens T, Meyer B, Ringel F, Krieg SM (2015) Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg 123:314–324CrossRefPubMedGoogle Scholar
  11. 11.
    Kato N, Schilt S, Schneider H, Frey D, Kufeld M, Vajkoczy P, Picht T (2014) Functional brain mapping of patients with arteriovenous malformations using navigated transcranial magnetic stimulation: first experience in ten patients. Acta Neurochir 156:885–895CrossRefPubMedGoogle Scholar
  12. 12.
    Korja M, Bervini D, Assaad N, Morgan MK (2014) Role of surgery in the management of brain arteriovenous malformations: prospective cohort study. Stroke 45:3549–3555CrossRefPubMedGoogle Scholar
  13. 13.
    Krieg SM, Lioumis P, Makela JP, Wilenius J, Karhu J, Hannula H, Savolainen P, Lucas CW, Seidel K, Laakso A, Islam M, Vaalto S, Lehtinen H, Vitikainen AM, Tarapore PE, Picht T (2017) Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir 159:1187–1195CrossRefPubMedGoogle Scholar
  14. 14.
    Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncology 16:1274–1282CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Krieg SM, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, Meyer B, Vajkoczy P, Berger MS, Ringel F, Nagarajan S (2014) Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroimageGoogle Scholar
  16. 16.
    Lawton MT (2015) The role of AVM microsurgery in the aftermath of a randomized trial of unruptured brain arteriovenous malformations. AJNR Am J Neuroradiol 36:617–619CrossRefPubMedGoogle Scholar
  17. 17.
    Lawton MT, Project UBAMS (2003) Spetzler-Martin grade III arteriovenous malformations: surgical results and a modification of the grading scale. Neurosurgery 52:740–748 discussion 748-749CrossRefPubMedGoogle Scholar
  18. 18.
    Lioumis P, Zhdanov A, Makela N, Lehtinen H, Wilenius J, Neuvonen T, Hannula H, Deletis V, Picht T, Makela JP (2012) A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 204:349–354CrossRefPubMedGoogle Scholar
  19. 19.
    Meling TR, Proust F, Gruber A, Niemela M, Regli L, Roche PH, Vajkoczy P (2014) On apples, oranges, and ARUBA. Acta Neurochir 156:1775–1779CrossRefPubMedGoogle Scholar
  20. 20.
    Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, Al-Shahi Salman R, Vicaut E, Young WL, Houdart E, Cordonnier C, Stefani MA, Hartmann A, von Kummer R, Biondi A, Berkefeld J, Klijn CJ, Harkness K, Libman R, Barreau X, Moskowitz AJ, International Ai (2014) Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383:614–621CrossRefPubMedGoogle Scholar
  21. 21.
    Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, Young WL, Hademenos G, Stroke Council ASA (2001) Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the stroke council, American Stroke Association. Circulation 103:2644–2657CrossRefPubMedGoogle Scholar
  22. 22.
    Picht T, Krieg SM, Sollmann N, Rosler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Makela JP, Deletis V, Meyer B, Vajkoczy P, Ringel F (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72:808–819CrossRefPubMedGoogle Scholar
  23. 23.
    Potts MB, Lau D, Abla AA, Kim H, Young WL, Lawton MT, Project UBAS (2015) Current surgical results with low-grade brain arteriovenous malformations. J Neurosurg 122:912–920CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMedGoogle Scholar
  25. 25.
    Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. NEnglJMed 358:18–27CrossRefGoogle Scholar
  26. 26.
    Schramm J, Schaller K, Esche J, Bostrom A (2017) Microsurgery for cerebral arteriovenous malformations: subgroup outcomes in a consecutive series of 288 cases. J Neurosurg 126:1056–1063CrossRefPubMedGoogle Scholar
  27. 27.
    Serrone J, Zuccarello M (2014) The role of microsurgical resection and radiosurgery for cerebral arteriovenous malformations. Methodist Debakey Cardiovasc J 10:240–244CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sollmann N, Ille S, Hauck T, Maurer S, Negwer C, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer 15:261CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sollmann N, Kubitscheck A, Maurer S, Ille S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM (2016) Preoperative language mapping by repetitive navigated transcranial magnetic stimulation and diffusion tensor imaging fiber tracking and their comparison to intraoperative stimulation. Neuroradiology 58:807–818CrossRefPubMedGoogle Scholar
  30. 30.
    Sollmann N, Meyer B, Krieg SM (2017) Implementing functional preoperative mapping in the clinical routine of a neurosurgical department: technical note. World Neurosurg 103:94–105CrossRefPubMedGoogle Scholar
  31. 31.
    Sollmann N, Picht T, Makela JP, Meyer B, Ringel F, Krieg SM (2013) Navigated transcranial magnetic stimulation for preoperative language mapping in a patient with a left frontoopercular glioblastoma. J Neurosurg 118:175–179CrossRefPubMedGoogle Scholar
  32. 32.
    Spears J, Terbrugge KG, Moosavian M, Montanera W, Willinsky RA, Wallace MC, Tymianski M (2006) A discriminative prediction model of neurological outcome for patients undergoing surgery of brain arteriovenous malformations. Stroke 37:1457–1464CrossRefPubMedGoogle Scholar
  33. 33.
    Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483CrossRefPubMedGoogle Scholar
  34. 34.
    Spetzler RF, Ponce FA (2011) A 3-tier classification of cerebral arteriovenous malformations. Clin Article J Neurosurg 114:842–849CrossRefGoogle Scholar
  35. 35.
    Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS (2013) Language mapping with navigated repetitive TMS: proof of technique and validation. NeuroImage 82:260–272CrossRefPubMedGoogle Scholar
  36. 36.
    Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Berger MS, Nagarajan SS, Krieg SM (2016) Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol 127:1895–1900CrossRefPubMedGoogle Scholar
  37. 37.
    Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wong J, Slomovic A, Ibrahim G, Radovanovic I, Tymianski M (2017) Microsurgery for ARUBA trial (A Randomized Trial of Unruptured Brain Arteriovenous Malformation)-eligible unruptured brain arteriovenous malformations. Stroke 48:136–144CrossRefPubMedGoogle Scholar
  39. 39.
    Yamamoto M, Jimbo M, Hara M, Saito I, Mori K (1996) Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery 38:906–914CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sebastian Ille
    • 1
    • 2
  • Thomas Picht
    • 3
  • Ehab Shiban
    • 1
  • Bernhard Meyer
    • 1
  • Peter Vajkoczy
    • 3
  • Sandro M. Krieg
    • 1
    • 2
  1. 1.Department of Neurosurgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.TUM-Neuroimaging Center, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Department of NeurosurgeryCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations