Skip to main content
Log in

Isolation, culture, and characterization of smooth muscle cells from human intracranial aneurysms

  • Experimental research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Smooth muscle cells (SMCs) play a critical role in the vascular wall and also participate in vascular repair mechanisms. Dysfunction of SMCs may also contribute to the formation of intracranial aneurysms (IAs) causing subarachnoid hemorrhage. Our aim was to investigate the possibility of using cultured SMCs as an in vitro model for the study of aneurysmal SMCs.

Methods

IA tissue was obtained during microsurgical ligation of IAs. By using the explant method, cell cultures were established from the aneurysmal tissue. The phenotype of cultured cells from passage to passage was studied using immunoperoxidase staining and Western blotting. Eight cell lines could be established from 29 IA samples. Four lines showing most rigorous growth were investigated more thoroughly.

Results

Abundant expression of SMC markers, α-smooth muscle cell actin and calponin, as well as of prolyl-4-hydroxylases, a key enzyme family in the synthesis of collagens, was observed in all of them. Aneurysmal SMCs in culture maintained their phenotype and SMC characteristics through the early passages of growth.

Conclusion

This is the first documented successful culture of SMCs from human IAs. An access to living human cells of aneurysmal origin gives us a new tool in our research of the formation, growth, and rupture of IAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

αSMA:

α-smooth muscle cell actin

DMEM:

Dulbecco’s modified Eagle’s medium

IA:

intracranial aneurysm

P4H:

prolyl-4-hydroxylase

PBS:

phosphate-buffered saline

PFA:

paraformaldehyde

SDS:

sodium dodecyl sulfate

SMC:

smooth muscle cell

WB:

Western blotting

References

  1. Boscolo E, Pavesi G, Zampieri P, Conconi MT, Calore C, Scienza R, Parnigotto PP, Folin M (2006) Endothelial cells from human cerebral aneurysm and arteriovenous malformation release ET-1 in response to vessel rupture. Int J Mol Med 18:813–819

    CAS  PubMed  Google Scholar 

  2. El-Mezgueldi M (1996) Calponin. Int J Biochem Cell Biol 28:1185–1189

    Article  CAS  PubMed  Google Scholar 

  3. Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn J, Anderson CS (2005) Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke 36:2773–2780

    Article  PubMed  Google Scholar 

  4. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293

    Article  PubMed  Google Scholar 

  5. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2006) Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 58:534–541

    PubMed  Google Scholar 

  6. Furness SG, McNagny K (2006) Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 34:13–32

    Article  CAS  PubMed  Google Scholar 

  7. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318

    Article  PubMed  Google Scholar 

  8. Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23:1510–1520

    Article  CAS  PubMed  Google Scholar 

  9. Juvela S (2002) Natural history of unruptured intracranial aneurysms: risks for aneurysm formation, growth, and rupture. Acta Neurochir Suppl 82:27–30

    CAS  PubMed  Google Scholar 

  10. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12:2165–2180

    Article  CAS  PubMed  Google Scholar 

  11. Laaksamo E, Tulamo R, Baumann M, Dashti R, Hernesniemi J, Juvela S, Niemelä M, Laakso A (2008) Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke 39:886–892

    Article  CAS  PubMed  Google Scholar 

  12. Li S, Fan YS, Chow LH, Den Diepstraten V, van Der Veer E, Sims SM, Pickering JG (2001) Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery. Circ Res 89:517–525

    Article  CAS  PubMed  Google Scholar 

  13. Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima N, Nagahiro S, Sano T, Satomi J, Satoh K (2000) Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls. Acta Neuropathol 100:475–480

    Article  CAS  PubMed  Google Scholar 

  15. Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23:953–964

    Article  CAS  PubMed  Google Scholar 

  16. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  17. Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, Piechota M, Stachura K, Moskala M, Przewlocki R, Szczudlik A (2010) Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 41:224–231

    Article  CAS  PubMed  Google Scholar 

  18. Rocnik EF, Chan BM, Pickering JG (1998) Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest 101:1889–1898

    Article  CAS  PubMed  Google Scholar 

  19. Rzucidlo EM, Martin KA, Powell RJ (2007) Regulation of vascular smooth muscle cell differentiation. J Vasc Surg 45(Suppl A):A25–A32

    Article  PubMed  Google Scholar 

  20. Takemura Y, Hirata Y, Sakata N, Nabeshima K, Takeshita M, Inoue T (2010) Histopathologic characteristics of a saccular aneurysm arising in the non-branching segment of the distal middle cerebral artery. Pathol Res Pract 206:391–396

    Article  PubMed  Google Scholar 

  21. Tulamo R, Frösen J, Junnikkala S, Paetau A, Pitkäniemi J, Kangasniemi M, Niemelä M, Jääskeläinen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076

    PubMed  Google Scholar 

  22. Tulamo R, Frösen J, Junnikkala S, Paetau A, Kangasniemi M, Peláez J, Hernesniemi J, Niemelä M, Meri S (2010) Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 90:168–179

    Article  CAS  PubMed  Google Scholar 

  23. Uranishi R, Baev NI, Kim JH, Awad IA (2001) Vascular smooth muscle cell differentiation in human cerebral vascular malformations. Neurosurgery 49:671–679

    Article  CAS  PubMed  Google Scholar 

  24. Van Den Diepstraten C, Papay K, Bolender Z, Brown A, Pickering JG (2003) Cloning of a novel prolyl 4-hydroxylase subunit expressed in the fibrous cap of human atherosclerotic plaque. Circulation 108:508–511

    Article  Google Scholar 

  25. Walker DG, Dalsing-Hernandez JE, Lue LF (2008) Human postmortem brain-derived cerebrovascular smooth muscle cells express all genes of the classical complement pathway: a potential mechanism for vascular damage in cerebral amyloid angiopathy and Alzheimer’s disease. Microvasc Res 75:411–419

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Rao PJ, Shillcutt SD, Newman WH (2003) Phenotypic diversity of smooth muscle cells isolated from human intracranial basilar artery. Neurosci Lett 351:1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki Laakso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bygglin, H., Laaksamo, E., Myllärniemi, M. et al. Isolation, culture, and characterization of smooth muscle cells from human intracranial aneurysms. Acta Neurochir 153, 311–318 (2011). https://doi.org/10.1007/s00701-010-0836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-010-0836-x

Keywords

Navigation