Skip to main content
Log in

Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Mitochondrial dysfunction is a major limiting factor in neuronal recovery following traumatic brain injury. Cyclosporin A (CsA) has been recently proposed for use in the early phase after severe head injury, for its ability to preserve mitochondrial bioenergetic state, potentially exerting a neuroprotective effect. The aim of this study was, therefore, to evaluate the effect of CsA on brain energy metabolism, as measured by cerebral microdialysis, and on cerebral hemodynamics, in a group of severely head injured patients.

Methods

Fifty adult patients with a severe head injury were enrolled in this randomized, double-blind, placebo-controlled study. Patients received 5 mg/kg of CsA over 24 h, or placebo, within 12 h of the injury. A microdialysis probe was placed in all patients, who were managed according to standard protocols for the treatment of severe head injury.

Findings

The most robust result of this study was that, over most of the monitoring period, brain dialysate glucose was significantly higher in the CsA treated patients than in placebo. Both lactate and pyruvate were also significantly higher in the CsA group. Glutamate concentration and lactate/pyruvate ratio were significantly higher in the placebo group than in CsA treated patients, respectively 1 to 2 days, and 2 to 3 days after the end of the 24-h drug infusion. The administration of CsA was also associated with a significant increase in mean arterial pressure (MAP) and cerebral perfusion pressure (CPP).

Conclusions

The administration of CsA in the early phase after head injury resulted in significantly higher extracellular fluid glucose and pyruvate, which may be evidence of a beneficial effect. The early administration of CsA was also associated with a significant increase in MAP and CPP and such a potentially beneficial hemodynamic effect might contribute to a neuroprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albensi BC, Sullivan PG, Thompson MB, Scheff SW, Mattson MP (2000) Cyclosporin ameliorates traumatic brain-injury-induced alterations of hippocampal synaptic plasticity. Exp Neurol 162:385–389

    Article  PubMed  CAS  Google Scholar 

  2. Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR (2002) Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 19:829–841

    Article  PubMed  Google Scholar 

  3. Alves OL, Doyle AJ, Clausen T, Gilman C, Bullock R (2003) Evaluation of topiramate neuroprotective effect in severe TBI using microdialysis. Ann N Y Acad Sci 993:25–34

    PubMed  CAS  Google Scholar 

  4. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Article  PubMed  CAS  Google Scholar 

  5. Benveniste H (1989) Brain microdialysis. J Neurochem 52:1667–1679

    Article  PubMed  CAS  Google Scholar 

  6. Brain Trauma Foundation Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS (2007) Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma 24:S59–S64

    Google Scholar 

  7. Buki A, Okonkwo DO, Povlishock JT (1999) Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 16:511–521

    PubMed  CAS  Google Scholar 

  8. Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

    PubMed  CAS  Google Scholar 

  9. Bullock MR, Lyeth BG, Muizelaar JP (1999) Current status of neuroprotection trials for traumatic brain injury: lessons from animal models and clinical studies. Neurosurgery 45:207–217

    Article  PubMed  CAS  Google Scholar 

  10. Cesarini KG, Enblad P, Ronne-Engstrom E, Marklund N, Salci K, Nilsson P, Hardemark HG, Hillered L, Persson L (2002) Early cerebral hyperglycolysis after subarachnoid haemorrhage correlates with favourable outcome. Acta Neurochir 144:1121–1131

    Article  CAS  Google Scholar 

  11. Chaurasia CS (1999) In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 13:317–332

    Article  PubMed  CAS  Google Scholar 

  12. Christians U, Gottschalk S, Miljus J, Hainz C, Benet LZ, Leibfritz D, Serkova N (2004) Alterations in glucose metabolism by cyclosporin in rat brain slices link to oxidative stress: interactions with mTOR inhibitors. Br J Pharmacol 143:388–396

    Article  PubMed  CAS  Google Scholar 

  13. Danovitch GM (2005) Immunosuppressive medications and protocols for kidney transplantation. In: Danovitch GM (ed) Handbook of kidney transplantation. Lippincott Williams & Wilkins, Philadelphia, pp 72–134

    Google Scholar 

  14. Domanska-Janik K, Buzanska L, Dluzniewska J, Kozlowska H, Sarnowska A, Zablocka B (2004) Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome c to cytoplasm. Mol Brain Res 121:50–59

    Article  PubMed  CAS  Google Scholar 

  15. Dusik JR, Glenn TC, Lee WN, Vespa PM, Kelly DF, Lee SM, Hovda DA, Martin NA (2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2] glucose labeling study in humans. J Cereb Blood Flow Metab 27:1593–602

    Article  CAS  Google Scholar 

  16. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644

    Article  PubMed  CAS  Google Scholar 

  17. Enblad P, Frykholm P, Valtysson J, Silander HC, Andersson J, Fasth KJ, Watanabe Y, Langstrom B, Hillered L, Persson L (2001) Middle cerebral artery occlusion and reperfusion in primates monitored by microdialysis and sequential positron emission tomography. Stroke 32:1574–1580

    PubMed  CAS  Google Scholar 

  18. Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17:843–855

    Article  PubMed  CAS  Google Scholar 

  19. Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T (1998) Cyclosporin A, but not FK506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 18:5151–5159

    PubMed  CAS  Google Scholar 

  20. Gardiner SM, March JE, Kemp PA, Fallgren B, Bennett T (2004)) Regional haemodynamic effects of cyclosporin A, tacrolimus and sirolimus in rats. Br J Pharmacol 141:634–643

    Article  CAS  Google Scholar 

  21. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27:1965–1973

    Article  PubMed  CAS  Google Scholar 

  22. Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:C313–C339

    PubMed  CAS  Google Scholar 

  23. Katsura K, Ekholm A, Siesjo BK (1992) Tissue PCO2 in brain ischemia related to lactate content in normo- and hypercapnic rats. J Cereb Blood Flow Metab 12:270–280

    PubMed  CAS  Google Scholar 

  24. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kierkpatrick PJ (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50:1213–1222

    Article  PubMed  Google Scholar 

  25. Kosch M, Hausberg M, Suwelack B (2003) Studies on effects of calcineurin inhibitor withdrawal on arterial distensibility and endothelial function in renal transplant recipients. Transplantation 76:1516–1519

    Article  PubMed  Google Scholar 

  26. Koura SS, Doppenberg EM, Marmarou A, Choi S, Young HF, Bullock R (1998) Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl 71:244–246

    PubMed  CAS  Google Scholar 

  27. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906

    Article  PubMed  Google Scholar 

  28. Hillered L, Persson L, Ponten U, Ungerstedt U (1990) Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir (Wien) 102:91–97

    Article  CAS  Google Scholar 

  29. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41

    Article  PubMed  Google Scholar 

  30. Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P (2006) Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 12:112–118

    Article  PubMed  Google Scholar 

  31. Hutchinson PJ, Gupta AK, Fryer TF, Al-Rawi PG, Chatfield DA, Coles JP, O’Connell MT, Kett-White R, Minhas PS, Aigbirhio FI, Clark JC, Kirkpatrikck PJ, Menon DK, Pickard JD (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745

    Article  PubMed  Google Scholar 

  32. Johnston AJ, Steiner LA, Coles JP, Chatfield DA, Fryer TD, Smielewski P, Hutchinson PJ, O’Connell MT, Al-Rawi PG, Aigbirihio FI, Clark JC, Pickard JD, Gupta AK, Menon DK (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195

    Article  PubMed  Google Scholar 

  33. Langemann H, Mendelowitsch A, Landolt H, Alessandri B, Gratzl O (1995) Experimental and clinical monitoring of glucose by microdialysis. Clin Neurol Neurosurg 97:149–155

    Article  PubMed  CAS  Google Scholar 

  34. Langemann H, Alessandri B, Mendelowitsch A, Feuerstein T, Landolt H, Gratzl O (2001) Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res 23:531–536

    Article  PubMed  CAS  Google Scholar 

  35. Li PA, Uchino H, Elmer E, Siesjo BK (1997) Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 753:133–140

    Article  PubMed  CAS  Google Scholar 

  36. Lifshitz J, Sullivan PG, Hovda DA, Wieloch T, Mcintosh TK (2004) Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 4:705–713

    Article  PubMed  CAS  Google Scholar 

  37. Lungu AO, Jin ZG, Yamawaki H, Tanimoto T, Wong C, Berk B (2004) Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae. J Biol Chem 279:48794–48800

    Article  PubMed  CAS  Google Scholar 

  38. Marklund N, Salci K, Lewen A, Hillered L (1997) Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport 8:1457–1461

    Article  PubMed  CAS  Google Scholar 

  39. Marrif H, Juurlink BH (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57:255–260

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19:736–741

    Article  PubMed  CAS  Google Scholar 

  41. Mazzeo AT, Kunene N, Gilman C, Hamm R, Bullock R (2006) Severe human traumatic brain injury, but not cyclosporin A treatment, depresses activated T lymphocytes early after injury. J Neurotrauma 23:962–975

    Article  PubMed  Google Scholar 

  42. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R (1999) Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg 91:1–10

    PubMed  CAS  Google Scholar 

  43. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U (1990) Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46:301–308

    Article  PubMed  CAS  Google Scholar 

  44. Nishiyama A, Kobori H, Fukui T, Zhang GX, Yao L, Rahman M, Hitomi H, Kiyomoto H, Shokoji T, Kimura S, Kohno M, Abe Y (2003) Role of angiotensin II and reactive oxygen species in cyclosporin A-dependent hypertension. Hypertension 42:754–760

    Article  PubMed  CAS  Google Scholar 

  45. Okonkwo DO, Povlishock JT (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19:443–451

    Article  PubMed  CAS  Google Scholar 

  46. Okonkwo DO, Buki A, Siman R, Povlishock JT (1999) Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10:353–358

    Article  PubMed  CAS  Google Scholar 

  47. Okonkwo DO, Melon DE, Pellicane AJ, Mutlu LK, Rubin DG, Stone JR, Helm GA (2003) Dose–response of cyclosporin A in attenuating traumatic axonal injury in rat. NeuroReport 14:463–466

    Article  PubMed  CAS  Google Scholar 

  48. Peerdeman SM, Girbes ARJ, Polderman KH, Vandertop WP (2003) Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med 29:1825–1828

    Article  PubMed  Google Scholar 

  49. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimultes aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  50. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, Hillered L (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84:606–616

    PubMed  CAS  Google Scholar 

  51. Pettus EH, Povlishock JT (1996) Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res 722:1–11

    Article  PubMed  CAS  Google Scholar 

  52. Povlishock JT, Pettus EH (1996) Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochir Suppl 66:81–86

    PubMed  CAS  Google Scholar 

  53. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom C-H (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709

    Article  PubMed  CAS  Google Scholar 

  54. Robertson CS (2001) Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology 95:1513–1517

    Article  PubMed  CAS  Google Scholar 

  55. Roullet JB, Xue H, McCarron DA, Holcomb S, Bennett WM (1994) Vascular mechanism of cyclosporin-induced hypertension in the rat. J Clin Invest 93:2244–2250

    Article  PubMed  CAS  Google Scholar 

  56. Sanchez-Lozada LG, Gamba G, Bolio A, Jimenez F, Herrera-Acosta J, Bobadilla NA (2000) Nifedipine prevents changes in nitric oxide synthase mRNA levels induced by cycloporine. Hypertension 36:642–647

    PubMed  CAS  Google Scholar 

  57. Scheff SW, Sullivan PG (1999) Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 16:783–792

    PubMed  CAS  Google Scholar 

  58. Schneweis S, Grond M, Staub F, Brinker G, Neveling M, Dohmen C, Graf R, Heiss WD (2001) Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke 32:1863–1867

    PubMed  CAS  Google Scholar 

  59. Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 93:808–814

    PubMed  CAS  Google Scholar 

  60. Shaltout HA, Abdel-Rahman AA (2003) Cyclosporin induces progressive attenuation of baroreceptor heart rate response and cumulative pressor response in conscious unrestrained rats. J Pharmacol Exp Ther 305:966–973

    Article  PubMed  CAS  Google Scholar 

  61. Shiga Y, Onodera H, Matsuo Y, Kogure K (1992) Cyclosporin A protects against ischemia–reperfusion injury in the brain. Brain Res 595:145–148

    Article  PubMed  CAS  Google Scholar 

  62. Signoretti S, Marmarou A, Tavazzi B, Dunbar J, Amorini AM, Lazzarino G, Vagnozzi R (2004) The protective effect of Cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma 21:1154–1167

    PubMed  Google Scholar 

  63. Skjoth-Rasmussen J, Schultz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurismal subarachnoid hemorrhage. J Neurosurg 100:8–15

    PubMed  CAS  Google Scholar 

  64. Stahl N, Mellergard P, Hallström A, Ungerstedt U, Nordstrom CH (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45:977–985

    Article  PubMed  CAS  Google Scholar 

  65. Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  PubMed  CAS  Google Scholar 

  66. Staub F, Graf R, Gabel P, Kochling M, Klug N, Heiss WD (2000) Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery 47:1106–1116

    Article  PubMed  CAS  Google Scholar 

  67. Sullivan PG, Thompson MB, Schdeff SW (1999) Cyclosporin A attuenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160:226–234

    Article  PubMed  CAS  Google Scholar 

  68. Sullivan PG, Rabchevsky AG, Hicks RR, Gibson TR, Fletcher-Turner A, Scheff SW (2000) Dose–response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 101:289–295

    Article  PubMed  CAS  Google Scholar 

  69. Sullivan PG, Thompson M, Scheff SW (2000) Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol 161:631–637

    Article  PubMed  CAS  Google Scholar 

  70. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79:231–239

    Article  PubMed  CAS  Google Scholar 

  71. Tolias CM, Reinert M, Seiler R, Gilman C, Scharf A, Bullock MR (2004) Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 101:435–444

    PubMed  Google Scholar 

  72. Uchino H, Elmer E, Uchino K, Li PA, He QP, Smith ML, Siesjo BK (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res 812:216–226

    Article  PubMed  CAS  Google Scholar 

  73. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siejo BK, Shibasaki F (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis 10:219–233

    Article  PubMed  CAS  Google Scholar 

  74. Ungerstedt U, Rostami E (2004) Microdialysis in neurointensive care. Curr Pharm Des 10:2145–2152

    Article  PubMed  CAS  Google Scholar 

  75. Valadka AB, Goodman JC, Gopinath SP, Uzura M, Robertson CS (1998) Comparison of brain tissue oxygen tension to microdialysis-based measures of cerebral ischemia in fatally head-injured patients. J Neurotrauma 15:509–519

    PubMed  CAS  Google Scholar 

  76. Valtysson J, Persson L, Hillered L (1998) Extracellular ischemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain. Acta Neurochir 140:387–395

    Article  CAS  Google Scholar 

  77. Vespa PM, McArthur D, O’Phelan K, Glenn T, Etchepare M, Kelly D, Bergsneider M, Martin NA (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877

    Article  PubMed  CAS  Google Scholar 

  78. Vespa P, Bergsneider M, Hattori N, wu H-M, Huang S-C, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  PubMed  CAS  Google Scholar 

  79. Wang, X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  80. Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14:23–34

    PubMed  CAS  Google Scholar 

  81. Yoshimoto T, Siesjo BK (1999) Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res 839:283–291

    Article  PubMed  CAS  Google Scholar 

  82. Yu G, Hess DC, Borlongan CV (2004) Combined cyclosporine-A and methylprednisolone treatment exerts partial and transient neuroprotection against ischemic stroke. Brain Res 1018:32–37

    Article  PubMed  CAS  Google Scholar 

  83. Zauner A, Bullock R (1995) The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review. J Neurotrauma 12:547–554

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by NIH NINDS grant N. P50 NS 12587-27, and Ross Bullock was supported by the Reynolds, and Lind-Lawrence Foundations.

Oscar L Alves was supported by grant no. SFRH/BD/3421/2000 from Fundação para a Ciência e Tecnologia, and by a Fulbright Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Teresa Mazzeo.

Additional information

Comment

This study supports the promising concept of using cerebral microdialysis (MD) in early drug development in the Neuro-ICU setting as proposed by Alves et al (1) for obtaining proof-of-concept, studying surrogate end point markers and pharmacokinetics.

The results support a putative neuroprotective effect of Cyklosporin A (CsA) by showing robust positive effects on local neurochemistry measured by MD and hemodynamics in TBI patients. Further work is needed to establish the CsA effects with global methods (e.g. MRI, PET) and to clarify the mechanisms of the observed effects. Analysis of unbound drug levels in MD samples would also be valuable.

The neurochemical effects of CsA are particularly intriguing in view of the emerging concept of energy metabolic crisis without hypoxia/ischemia being a common phenomenon following TBI and perhaps subarachnoid hemorrhage (2-7). This phenomenon is characterised by a relative shortage of brain glucose and pyruvate perhaps related to competition for glucose between metabolic pathways such as the glycolytic and Pentose Phosphate Pathways (8) contributing to secondary brain damage. The observation that CsA may alleviate this type of energy metabolic crisis by increasing the cerebral MD glucose and pyruvate levels could lead to a higher capacity for endogenous brain repair and improved outcome.

References

1. Alves OL, Doyle AJ, Clausen T, Gilman C, Bullock R (2003) Evaluation of topiramate neuroprotective effect in Severe TBI using microdialysis. Ann N Y Acad Sci 993:25–34

2. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906

3. Vespa P, Bergsneider M, Hattori N, wu H-M, Huang S-C, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

4. Samuelsson C, Hillered L, Zetterling M, Hesselager G, Johansson M, Lewén A, Marklund N, Nilsson P, Salci K, Enblad P, Kumlien E, Ronne-Engstrom E (2007) Cerebral glutamine and glutamate levels in relation to compromised energy metabolism – A microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 27(7):1309–17

5. Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P (2006) Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 12:112–118

6. Marcoux J, McArthur D, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa P (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med (in press)

7. Hillered L, Enblad P (2008) Non-ischemic energy metabolic crisis in acute brain injury. Crit Care Med (Editorial, in press)

8. Dusik Jr, Glenn TC, Lee WN, Vespa PM, Kelly DF, Lee SM, Hovda DA, Martin NA (2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2] glucose labelling study in humans. J Cereb Blood Flow Metab 27:1593–602

Lars Hillered

Dept of Neuroscience, Neurosurgery,

Uppsala University Hospital, Uppsala, Sweden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzeo, A.T., Alves, Ó.L., Gilman, C.B. et al. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 150, 1019–1031 (2008). https://doi.org/10.1007/s00701-008-0021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-008-0021-7

Keywords

Navigation