Skip to main content
Log in

The transition to selfing in Azorean Tolpis (Asteraceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Asteraceae have the most endemic species of any flowering plant family in oceanic archipelagos, and these insular endemics display a higher frequency of self-compatibility (SC) compared to mainland composites. However, little attention has focused on the evolution of selfing in situ in islands. The genus Tolpis (Asteraceae) in the Macaronesian archipelagos consists predominantly of self-incompatible (SI) or pseudo-self-compatible plants, with one documented occurrence of the origin of self-compatibility (SC) in the Canary Islands. This study reports SC in two small populations of T. succulenta on Graciosa Island in the Azores. Progeny from the two populations exhibit high self-seed set. Segregation in F2 hybrids between SC and SI T. succulenta indicates that one major factor is associated with breeding system, with SC recessive to SI. Molecular phylogenetic analyses show that SC T. succulenta is sister to SI T. succulenta in the Azores, suggesting that SC originated from SI T. succulenta in the Azores. Plants on Graciosa are morphologically distinct from SI populations of T. succulenta on other islands in the Azorean archipelago, with smaller capitula and lower pollen-ovule ratios, both indicative of the selfing syndrome. The factors that may have favored selfing in these populations are discussed, as are the conservation implications of SC. Finally, the issue of whether the two SC populations are cryptic species worthy of taxonomic recognition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker HG (1955) Self compatibility and establishment after ‘long distance’ dispersal. Evolution 9:347–349

    Google Scholar 

  • Baker HG (1967) Support for Baker’s Law—as a rule. Evolution 21:853–856

    Article  PubMed  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc Roy Soc B Biol Sci 280:20130913. https://doi.org/10.1098/rspb.2013.0913

    Article  Google Scholar 

  • Barrett SCH, Harder LD (2017) The ecology of mating and its evolutionary consequences in seed plants. Annual Rev Ecol Evol Syst 48:135–157. https://doi.org/10.1146/annurev-ecolsys-110316-023021

    Article  Google Scholar 

  • Bateman RM, Rudall PJ, Moura M (2013) Systematic revision of Platanthera in the Azorean archipelago: not one but three species, including arguably Europe’s rarest orchid. PeerJ 1:e218. https://doi.org/10.7717/peerj.218

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winkler K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Borges Silva L, Sardos J, Menezes de Sequeira M, Silva L, Crawford D, Moura M (2015) Understanding intra and inter-archipelago population genetic patterns within a recently evolved insular endemic lineage. Pl Syst Evol 302:367–384

    Article  Google Scholar 

  • Bramwell D, Bramwell Z (2001) Wild flowers of the Canary Islands, 2nd edn. Editorial Ruida, Madrid

    Google Scholar 

  • Brennan AC, Harris AS, Hiscock SJ (2003) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating system constraints imposed by low S-allele number. Phil Trans Royal Soc B 358:1047–1050

    Article  CAS  Google Scholar 

  • Brennan AC, Tabah DA, Harris AS, Hiscock SJ (2011) Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates. Heredity 106:113–123

    Article  CAS  PubMed  Google Scholar 

  • Bried J, Magalhães MC, Bolton M, Neves VC, Bell E, Pereira JC, Aguiar L, Monteiro LR, Santos RS (2009) Seabird habitat restoration on Praia Islet, Azores archipelago. Ecol Restoration 27:27–36

    Article  Google Scholar 

  • Brys R, Vanden Broeck A, Mergeay J, Jacquemyn H (2013) The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68:1281–1293. https://doi.org/10.1111/evo.12345

    Article  Google Scholar 

  • Busch JW, Delph LF (2012) Importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann Bot (Oxford) 109:553–562. https://doi.org/10.1093/aob/mcr219

    Article  Google Scholar 

  • Carine MA, Schaefer H (2010) The Azores diversity enigma: why are there so few Azorean endemic flowering plants and why are they so widespread? J Biogeogr 37:77–89. https://doi.org/10.1111/j.1365-2699.2009.02181.x

    Article  Google Scholar 

  • Carlquist S (1966) The biota of long-distance dispersal. IV. Genetic systems in the floras of oceanic islands. Evolution 20:433–455

    Article  PubMed  Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York

    Book  Google Scholar 

  • Carr GD, Powell EA, Kyhos DW (1986) Self-incompatibility in the Hawaiian Madiinae (Compositae): an exception to Baker’s rule. Evolution 40:430–434

    Article  PubMed  Google Scholar 

  • Carracedo JC (2011) Geología de Canarias. Origen, evolución, edad y volcanismo. Editorial Rueda E.L, Madrid

    Google Scholar 

  • Chamorro S, Heleno R, Olesen JM, McMullen CK, Taveset A (2012) Pollination patterns and plant breeding systems in the Galápagos: a review. Ann Bot (Oxford) 110:1489–1501. https://doi.org/10.1093/aob/mcs132

    Article  Google Scholar 

  • Charlesworth D, Pannell JR (2001) Mating systems and population genetic structure in the light of coalescent theory. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell, Oxford, pp 73–95

    Google Scholar 

  • Cheptou PO (2012) Clarifying Baker’s Law. Ann Bot (Oxford) 109:633–641. https://doi.org/10.1093/aob/mcr127

    Article  Google Scholar 

  • Crawford DJ, Stuessy TF (2016) Cryptic variation, molecular data, and the challenges of conserving plant diversity in oceanic archipelagos: the critical role for plant systematics. Korean J Pl Tax 46:129–148. https://doi.org/10.11110/kjpt.2016.46.2.129

    Article  Google Scholar 

  • Crawford DJ, Archibald JK, Stoermer D, Mort ME, Kelly JK, Santos-Guerra A (2008) A test of Baker’s law: breeding systems and the radiation of Tolpis (Asteraceae) in the Canary Islands. Int J Pl Sci 169:782–791. https://doi.org/10.1086/533604

    Article  Google Scholar 

  • Crawford DJ, Lowrey TK, Anderson GJ, Bernardello G, Santos-Guerra A, Stuessy TF (2009) Genetic diversity in the colonizing ancestors of Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of the Compositae. International Association of Plant Taxonomy, Vienna, pp 139–151

    Google Scholar 

  • Crawford DJ, Anderson GJ, Borges Silva L, de Sequeira MM, Moura M, Santos-Guerra A, Kelly JK, Mort ME (2015) Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries. Pl Syst Evol 301:1981–1993. https://doi.org/10.1007/s00606-015-1210-5

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eaton DAR (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30:1844–1849. https://doi.org/10.1093/bioinformatics/btu121

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63

    Article  Google Scholar 

  • Goodwillie C (2001) Pollen limitation and the evolution of self-incompatibility in Linanthus (Polemoniaceae). Int J Pl Sci 162:1283–1292

    Article  Google Scholar 

  • Grossenbacher D, Brandvain Y, Auld JR, Burd M, Cheptou PO, Conner JK, Grant AG, Hovick SM, Pannell JR, Pauw A, Petanidou T, Randle AM, de Casas RR, Vamosi J, Winn A, Igic B, Busch JW, Kalisz S, Goldberg EE (2017) Self-compatibility is over-represented on islands. New Phytol 215:469–478. https://doi.org/10.1111/nph.14534

    Article  PubMed  Google Scholar 

  • Gruenstaeudl M, Santos-Guerra A, Jansen RK (2012) Phylogenetic analyses of Tolpis Adans. (Asteraceae) reveal patterns of adaptive radiation, multiple colonization and interspecific hybridization. Cladistics 29:416–434. https://doi.org/10.1111/cla.12005

    Article  PubMed  Google Scholar 

  • Hu X-S (2015) Mating system as a barrier to gene flow. Evolution 69:1158–1177. https://doi.org/10.1111/evo.12660

    Article  CAS  PubMed  Google Scholar 

  • Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Pl Sci 169:93–104

    Article  Google Scholar 

  • Jaén-Molina R, Marrero-Rodríguez A, Reyes-Betancort JA, Santos-Guerra A, Naranjo-Suárez A, Caujapé-Castells J (2015) Molecular taxonomic identification in the absence of a ‘barcoding gap’: a test with the endemic flora of the Canarian oceanic hotspot. Molec Ecol Resources 15:42–56. https://doi.org/10.1111/1755-0998.12292

    Article  CAS  Google Scholar 

  • Jarvis CE (1980) Systematic studies in the genus Tolpis Adanson. PhD Thesis, University of Reading, Reading

  • Jones KE, Reyes-Betancort JA, Hiscock SJ, Carine MA (2014) Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), a Macaronesian endemic genus. Amer J Bot 101:637–651

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Koseva B, Crawford DJ, Brown K, Mort ME, Kelly JK (2017) The genetic breakdown of self-incompatibility in Tolpis coronopifolia (Asteraceae). New Phytol 216:1256–1267. https://doi.org/10.1111/nph.14759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layman NC, Fernando MTR, Herlihy CR, Busch JW (2017) Costs of selfing prevent the spread of a self-compatibility mutation that causes reproductive assurance. Evolution 71:884–897. https://doi.org/10.1111/evo.13167

    Article  PubMed  Google Scholar 

  • Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Amer Naturalist 148:321–332

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.51. Available at: http://www.mesquiteproject.org/. Accessed 15 Oct 2018

  • McMullen CK (1999) Flowering plants of the Galápagos. Cornell University Press, Ithaca

    Google Scholar 

  • McMullen CK, Naranjo SJ (1994) Pollination of Scalesia baurii ssp. Hopkinsii (Asteraceae) on Pinta Island. Noticias Galápagos 53:25–28

    Google Scholar 

  • Moore M, Francisco-Ortega J, Santos-Guerra A, Jansen R (2002) Chloroplast DNA evidence for the roles of island colonization and extinction in Tolpis (Asteraceae: Lactuceae). Amer J Bot 89:518–526

    Article  Google Scholar 

  • Mort ME, Crawford DJ, Kelly JK, Santos-Guerra A, Menezes de Sequeira M, Moura M, Caujape-Castells J (2015) Mulitplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineage. Amer J Bot 102:634–641. https://doi.org/10.3732/ajb.1400551

    Article  Google Scholar 

  • Moura M, Silva L, Dias EF, Schaefer H, Carine M (2015) A revision of the genus Leontodon (Asteraceae) in the Azores based on morphological and molecular evidence. Phytotaxa 210:24–46. https://doi.org/10.11646/phytotaxa.210.1.4

    Article  Google Scholar 

  • Nielsen LR, Philipp M, Adsersen H, Siegismund HR (2000) Breeding system of Scalesia divisa Andersson, an endemic Asteraceae from the Galápagos Islands. Norske Vidensk-Akad Mat-Naturvidensk Kl, Shrifter, Ny Ser 39:127–138

    Google Scholar 

  • Nielsen L, Siegismund HS, Philipp M (2003) Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Bot J Linn Soc 142:93–101

    Article  Google Scholar 

  • Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:121–133

    Article  Google Scholar 

  • Pannell JR (2015) Evolution of the mating system in colonizing plants. Molec Ecol 24:2018–2037. https://doi.org/10.1111/mec.13087

    Article  PubMed  Google Scholar 

  • Pannell JR, Voillemot M (2017) Evolution and ecology of plant mating systems. In: eLS. Wiley. Chichester. https://doi.org/10.1002/9780470015902.a0021909.pub2

  • Pannell J, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant A, Grossenbacher DL, Hovick SM, Igic B, Kalisz S, Petanidou T, Randle AM, de Casas RR, Pauw A, Vamosi JC, Winn AA (2015) The scope of Baker’s law. New Phytol 208:656–667. https://doi.org/10.1111/nph.13539

    Article  PubMed  Google Scholar 

  • Rambaut A (2007) FigTree version 1.4.2: a graphical viewer of phylogenetic trees. Available at: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 31 Oct 2018

  • Reinartz JA, Les DH (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Amer J Bot 83:446–455

    Article  Google Scholar 

  • Schaefer H (2005) Flora of the Azores-a field guide, 2nd edn. Margraf Publishers, Weikersheim

    Google Scholar 

  • Schaefer H (2015) On the origin and systematic position of the Azorean goldenrod, Solidago azorica (Asteraceae). Phytotaxa 210:47–59. https://doi.org/10.11646/phytotaxa.210.1.5

    Article  Google Scholar 

  • Schaefer H, Moura M, Graciete M, Maciel B, Silva L, Rumsey FJ, Carine MA (2011) The Linnean shortfall in oceanic island biogeography: a case study in the Azores. J Biogeogr 38:1345–1355. https://doi.org/10.1111/j.1365-2699.2011.02494.x

    Article  Google Scholar 

  • Sibrant ALR, Marques FO, Hildenbrand A (2014) Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores. J Volcanol Geotherm Res 284:32–45. https://doi.org/10.1016/j.jvolgeores.2014.07.014

    Article  CAS  Google Scholar 

  • Silva L, Martins MC, Maciel MGB, Moura M (eds) (2009) Flora vascular dos Açores: prioridades em conservação. Azorean vascular flora: priorities in conservation. Amigos dos Açores and CCPA, Ponta Delgada

  • Silva L, Moura M, Schaefer H, Rumsey F, Dias EF (2010) Lista das plantas vasculares (Tracheobionta). List of vascular plants (Tracheobionta). In: Borges PAV, Costa A, Cunha R, Gabriel R, Gonçalves V, Martins AFM, Melo I, Parente M, Raposeiro P, Rodrigues P, Santos RS, Silva L, Vieira P, Vieira V (eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, pp 117–146

    Google Scholar 

  • Silva L, Dias EF, Sardos J, Azevedo EB, Schaefer H, Moura M (2015) Towards a more holistic research approach to plant conservation: the case of rare plants on oceanic islands. AoB PLANTS 7:plv066. https://doi.org/10.1093/aobpla/plv066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JL, Brennan AC, Mejıas JA (2016) Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species. AoB PLANTS 8:plw029. https://doi.org/10.1093/aobpla/plw029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI (2012) Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 66:1360–1374. https://doi.org/10.1111/j.1558-5646.2011.01540.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto-Trejo F, Kelly JK, Archibald JK, Mort ME, Santos-Guerra A, Crawford DJ (2013) The genetics of self-compatibility and associated floral characters in Tolpis (Asteraceae) in the Canary Islands. Int J Pl Sci 174:171–178. https://doi.org/10.1086/668788

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Amer Naturalist 91:337–354

    Article  Google Scholar 

  • Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson K-H, Liow LH, Nowak MD, Stedje B, Bachmann L, Dimitrov D (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33:153–163. https://doi.org/10.1016/j.tree.2017.11.007

    Article  PubMed  Google Scholar 

  • Wagner WL, Herbst DR, Sohmer SH (1990) Manual of the flowering plants of Hawaii. University of Hawaii Press and Bishop Museum Press, Honolulu

    Google Scholar 

  • Weissmann JA, Picanço A, Borges PAV, Schaefer H (2017) Bees of the Azores: an annotated checklist (Apidae, Hymenoptera). ZooKeys 642:63–95. https://doi.org/10.3897/zookeys.642.10773

    Article  Google Scholar 

  • Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Phil Trans Royal Soc B 280:20130133. https://doi.org/10.1098/rspb.2013.0133

    Article  Google Scholar 

  • Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a General Research Fund grant from KU EEB to MEM. The authors wish to thank the director and staff of Parque Natural da Graciosa for their assistance in providing seeds of the Graciosa populations as well as population census and population origin information; Katie Sadler and Joshua Montgomery for assistance with plant propagation and for assessing levels of pollen fertility and seed set; Gil Ortiz for preparing the images; Griffin White for assistance with DNA extraction; Tina Kiedaisch for assistance with field work. Special appreciation goes to Michael Gruenstaeudl for supplying seeds of Arnoseris minima and for providing constructive comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Mort.

Additional information

Handling Editor: Christoph Oberprieler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, D.J., Moura, M., Borges Silva, L. et al. The transition to selfing in Azorean Tolpis (Asteraceae). Plant Syst Evol 305, 305–317 (2019). https://doi.org/10.1007/s00606-019-01573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-019-01573-7

Keywords

Navigation