Skip to main content
Log in

Study of the reproductive biology of an Amazonian Heterotaxis (Orchidaceae) demonstrates the collection of resin-like material by stingless bees

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Tropical and subtropical plants provide to pollinators a range of nutritive and non-nutritive materials as alternative to pollen and nectar, including resins, which are gathered by females of several groups of social and solitary bees. Although resin-like material has previously been recorded in Maxillariinae, these investigations generally did not present data relating to pollinators. In fact, the collection of resins has never been recorded elsewhere in orchids. The aim of this paper was to provide a detailed study of the reproductive biology of an Amazonian Heterotaxis, H. superflua, based on records of flowering phenology, floral morphology, pollinator behavior and breeding system. Heterotaxis superflua offers resin-like material to pollinators and is pollinated by a single species of stingless bee. The resin is a heterogeneous material rich in mucilage, starch and sugars, while lipoidal substances occur as small droplets. Chemical analyses confirm the presence of sugar, which explain the presence of reducing sugars and mucilage detected in the histochemical investigations. Our data also showed the Heterotaxis is self-compatible and pollinator dependent. This study demonstrates for the first time the collection of resin-like material in orchids. The gathering of resin is frequently associated with the nest construction, since this material is considered to be a water-repellent and has anti-pathogen chemical properties. Despite offering of a floral reward, fruit set under natural conditions is lower than for experimental pollinations, suggesting limited pollen flow within the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:99–210

    Article  Google Scholar 

  • Armbruster WS (1984) The role of resin in angiosperm pollination: ecological and chemical considerations. Amer J Bot 71:1149–1160

    Article  Google Scholar 

  • ArmbrusterWS Webster GL (1981) Sistemas de polinização de duas espécies simpátricas de Dalechampia (Euphorbiaceae) no Amazonas, Brasil. Acta Amazonica 11:13–17

    Article  Google Scholar 

  • Baker HG, Baker I (1986) The occurrence and significance of amino-acids in floral nectar. Pl Syst Evol 151:175–186

    Article  CAS  Google Scholar 

  • Blanco MA, Carnevali G, Whitten WM, Singer RB, Koehler S, Williams NH, Ojeda I, Neubig KM, Endara L (2007) Generic realignments in Maxillariinae (Orchidaceae). Lankesteriana 7:515–537. https://doi.org/10.15517/lank.vi.7935

    Article  Google Scholar 

  • Braga PIS (1977) Aspectos biológicos das Orchidaceae de uma campina da Amazônia Central. Acta Amazonica 7:1–89

    Google Scholar 

  • Clarke AE, Andreson RL, Stone BA (1979) Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540

    Article  CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Davies KL, Stpiczyńska M (2006) Labellar micromorphology of Bifrenariinae Dressler (Orchidaceae). Ann Bot (Oxford) 98:1215–1231. https://doi.org/10.1093/aob/mcl204

    Article  CAS  Google Scholar 

  • Davies KL, Stpiczyńska M (2012) Comparative labellar anatomy of resin-secreting and putative resin-mimic species of Maxillaria s.l. (Orchidaceae: Maxillariinae). Bot J Linn Soc 170:405–435. https://doi.org/10.1111/j.1095-8339.2012.01278.x

    Article  Google Scholar 

  • Davies KL, Stpiczyńska M (2017) Comparative floral micromorphology and the ultrastructural basis of fragrance production in pseudocopulatory Mormolyca s.s. and non-pseudocopulatory Maxillaria section Rufescens s.s. (Orchidaceae). Bot J Linn Soc 185:81–112. https://doi.org/10.1093/botlinnean/box048

    Article  Google Scholar 

  • Davies KL, Turner MP (2004) Morphology of Floral Papillae in Maxillaria Ruiz & Pav. (Orchidaceae). Ann Bot (Oxford) 93:75–86

    Article  CAS  Google Scholar 

  • Davies KL, Roberts DL, Turner MP (2002) Pseudopollen and food-hair diversity in Polystachya Hook. (Orchidaceae). Ann Bot (Oxford) 90:477–484

    Article  CAS  Google Scholar 

  • Davies KL, Turner MP, Gregg A (2003a) Lipoidal labellar secretions in Maxillaria Ruiz & Pav. (Orchidaceae). Ann Bot (Oxford) 91:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KL, Turner MP, Gregg A (2003b) Atypical pseudopollen-forming hairs in Maxillaria Ruiz & Pav. (Orchidaceae). Bot J Linn Soc 143:151–158

    Article  Google Scholar 

  • de Barros F,Vinhos F, Rodrigues VT, Barberena FFVA, Fraga CN, Pessoa, EM, Forster W, Menini Neto L, Furtado SG, Nardy C, Azevedo CO, Guimarães LRS (2015) Orchidaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB37701. Accessed 10 Oct 2017

  • Drescher N, Wallace HM, Katouli M, Massaro CF, Leonhardt SD (2014) Diversity matters: how bees benefit from different resin sources. Oecologia 176:943–953. https://doi.org/10.1007/s00442-014-3070-z

    Article  PubMed  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination Ecology. Pergamon Press, Oxford

    Google Scholar 

  • Flach A, Dondon RC, Singer RB, Koehler S, Amaral MCE, Marsaioli AJ (2004) The chemistry of pollination in selected Brazilian Maxillariinae orchids: floral rewards and fragrance. J Chem Ecol 30:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Flach A, Marsaioli AJ, Singer RB, Amaral MCE, Menezes C, Ker WE, Batista-Pereira LG, Corrêa AG (2006) Pollination by sexual mimicry in Mormolyca ringens: a floral chemistry that remarkably matches the pheromones of virgin queens of Scaptotrigona sp. J Chem Ecol 32:59–70

    Article  CAS  PubMed  Google Scholar 

  • Franz G (1979) Metabolism of reserve polysaccharides in tubers of Orchis morio L. Pl Med 36:68–73

    Article  CAS  Google Scholar 

  • Gonzáles ML (1999) Polisacáridos. In: Fresno AMV del (ed) Farmacognosia general. Ed. Síntesis, Madrid, pp 335

  • Gregory M, Baas P (1989) A survey of mucilage cells in vegetative organs of the dicotyledons. Israel J Bot 38:125–174

    Google Scholar 

  • Hendra R, Ahmad S, Sukari A, Shukor MY, Oskoueian E (2011) Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int J Molec Sci 12:3422–3431. https://doi.org/10.3390/ijms12063422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde BB (1970) Mucilage-producing cells in the seed coat of Plantago ovata: developmental fine structure. Amer J Bot 57:1197–1206

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co., New York

    Google Scholar 

  • Kearns C, Inouye W (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Köppen W (1948) Climatologia: com um estúdio de los climas de la tierra. Fondo de Cultura Econômica, Guadalajara

    Google Scholar 

  • Krahl AH, Valsko JJ, Trindade DRP, Holanda ASS (2012) Sistema reprodutivo de quatro espécies amazônicas de Orchidaceae e implicações para a orquidofilia. Orquidario 26:63–68

    Google Scholar 

  • Krahl AH, Holanda ASS, Krahl DRP, Webber AC (2015) Polinização de Camaridium ochroleucum Lindl. (Orchidaceae: Maxillariinae). Biota Amazonica 5:1–7

    Article  Google Scholar 

  • Lipp CC, Goldstein G, Meinzer FC, Niemczura W (1994) Freezing tolerance and avoidance in high-elevation Hawaiian plants. Plant Cell Environ 17:1035–1044

    Article  Google Scholar 

  • Lokvam J, Braddock JF (1999) Anti-bacterial function in the sexually dimorphic pollinator rewards of Clusia graniflora (Clusiaceae). Oecologia 119:534–540

    Article  PubMed  Google Scholar 

  • Luizão FJ (1995) Ecological studies in contrasting forest types in Central Amazonia. PhD Thesis, University of Stirling, Stirling

  • Mickeliunas L, Pansarin ER, Sazima M (2006) Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae). Revista Brasil Bot 29:251–258. https://doi.org/10.1590/S0100-84042006000200006

    Article  Google Scholar 

  • Nayaka HB, Londonkar RL, Umesh MK, Tukappa A (2014) Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L. Int J Bacteriol 2014:1–10. https://doi.org/10.1155/2014/175851

    Article  CAS  Google Scholar 

  • Ojeda I, Carnevali G, Williams NH, Whitten WM (2003) Phylogeny of the Heterotaxis Lindley complex (Maxillariinae): evolution of the vegetative architecture and pollination syndromes. Lankesteriana 7:45–47

    Google Scholar 

  • Okada H, Kubo S, Mori Y (1997) Pollination system of Neuwiedia veratrifolia Blume (Orchidaceae, Apostasioideae) in the Malesian wet tropics. Acta Phytotax Geobot 47:173–181

    Google Scholar 

  • Oliveira DMA, Porto AM, Bittrich V, Venancio I, Marsaioli AJ, Tidsskrift AJ (1996) Floral resins of Clusia spp.: chemical composition and biological function. Tetrahedron Lett 37:6427–6430

    Article  Google Scholar 

  • Pansarin ER, Amaral MCE (2006) Biologia reprodutiva e polinização de duas espécies de Polystachya Hook. No Sudeste do Brasil: evidências de pseudoceistogamia em Polystachyeae (Orchidaceae). Revista Brasil Bot 29:423–432

    Article  Google Scholar 

  • Pansarin ER, Amaral MCE (2008) Pollen and nectar as a reward in the basal epidendroid Psilochilus modestus (Orchidaceae: Triphoreae): a study of floral morphology, reproductive biology and pollination strategy. Flora 203:474–483. https://doi.org/10.1016/j.flora.2007.07.004

    Article  Google Scholar 

  • Pansarin ER, Maciel AA (2017) Evolution of pollination systems involving edible trichomes in orchids. AoB PLANTS 10:plx033. https://doi.org/10.1093/aobpla/plx033

    Article  CAS  Google Scholar 

  • Pansarin ER, Pansarin LM (2010) The family Orchidaceae in the Serra do Japi, State of São Paulo, Brazil. Springer, Wien

    Google Scholar 

  • Pansarin ER, Pansarin LM (2011) Reproductive biology of Trichocentrum pumilum: an orchid pollinated by oil-collecting bees. Pl Biol (Stuttgart) 13:576–581. https://doi.org/10.1111/j.1438-8677.2010.00420.x

    Article  CAS  Google Scholar 

  • Pansarin ER, Pedro SRM (2016) Reproductive biology of a hummingbird-pollinated Bilbergia: light influence on pollinator behaviour and specificity in a Brazilian semi-deciduous forest. Pl Biol (Stuttgart) 18:920–927. https://doi.org/10.1111/plb.12496

    Article  CAS  Google Scholar 

  • Pansarin ER, Bittrich V, Amaral MCE (2006) At daybreak—reproductive biology and isolating mechanisms of Cirrhaea dependens (Orchidaceae). Pl Biol (Stuttgart) 8:494–502. https://doi.org/10.1055/s-2006-923800

    Article  CAS  Google Scholar 

  • Pansarin LM, de Castro M, Sazima M (2009) Osmophore and elaiophores of Grobya amherstiae (Catasetinae, Orchidaceae) and their relation to pollination. Bot J Linn Soc 159:408–415. https://doi.org/10.1111/j.1095-8339.2009.00953.x

    Article  Google Scholar 

  • Parra-Tabla V, Vargas CF, Magaña-Rueda S, Navarro J (2000) Female and male pollination success of Oncidium ascendens Lindley (Orchidaceae) in two contrasting habitat patches: forest vs agricultural field. Biol Conservation 94:335–340

    Article  Google Scholar 

  • Pimienta-Barrios E, Nobel PS (1998) Vegetative, reproductive and physiological adaptations to aridity of pitayo (Stenocereus queretaroensis, Cactaceae). Econ Bot 52:401–411

    Article  Google Scholar 

  • Pizzolato TD (1977) Staining of Tilia mucilages with Mayer’s tannic acid-ferric chloride. Bull Torrey Bot Club 104:277–279

    Article  Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (2009) Genera orchidacearum 5: epidendroideae (part two). Oxford University Press, New York

    Google Scholar 

  • Purvis MJ, Collier DC, Walls D (1964) Laboratory techniques in botany. Butterwoths, London

    Google Scholar 

  • Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ (2014) Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr Biol 24:2845–2849. https://doi.org/10.1016/j.cub.2014.10.033

    Article  CAS  PubMed  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue o. StainTechnol 43:247–249

    Google Scholar 

  • Sass JE (1951) Botanical microtechnique, 2nd edn. Iowa State College Press, Ames

    Google Scholar 

  • Schmidt-Adam G, Murray BG (2002) Structure and histochemistry of the stigma and style of Metrosideros excelsa. New Zealand J Bot 40:95–103

    Article  Google Scholar 

  • Scogin R, Young DA, Jones CE (1977) Anthochlor pigments and pollination biology: II. The ultraviolet patterns of Coreopsis gigantean (Asteraceae). Bull Torrey Bot Club 104:155–159

    Article  CAS  Google Scholar 

  • Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68:301–322

    Article  Google Scholar 

  • Singer RB (2002) The pollination mechanism in Trigonidium obtusum Lindl (Orchidaceae: Maxillariinae): sexual mimicry and trap-flowers. Ann Bot (Oxford) 89:157–163

    Article  Google Scholar 

  • Singer RB, Cocucci AA (1999) Pollination mechanisms in four sympatric Southern Brazilian Epidendroideae orchids. Lindleyana 14:47–56

    Google Scholar 

  • Singer RB, Koehler S (2004) Pollinarium morphology and floral rewards in Brazilian Maxillariinae (Orchidaceae). Ann Bot (Oxford) 93:39–51

    Article  Google Scholar 

  • Singer RB, Flach A, Koehler S, Marsaioli AJ, Amaral MCE (2004) Sexual mimicry in Mormolyca ringens (Lindl.) Schltr. (Orchidaceae: Maxillariinae). Ann Bot (Oxford) 93:755–762

    Article  Google Scholar 

  • Singer RB, Marsaioli AJ, Flach A, Reis MG (2006) The ecology and chemistry of pollination in Brazilian orchids: recent advances. Chapter 64. In: da Silva J (ed) Floriculture, ornamental and plant biotechnology, vol. IV. Global Science Books, Middlessex, pp 570–583

    Google Scholar 

  • Stpiczyńska M, Davies KL (2009) Floral, resin-secreting trichomes in Maxillaria dichroma Rolfe (Orchidaceae: Maxillariinae). Acta Agrobot 62:43–51

    Article  Google Scholar 

  • Tremblay RL (1992) Trends in pollination ecology of the Orchidaceae: evolution and systematic. Canad J Bot 70:642–650

    Article  Google Scholar 

  • Van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination an evolution. University of Miami Press, Coral Gables

    Google Scholar 

  • Wu T, He M, Zang X, Zhou Y, Qiu T, Pan S, Xu X (2013) A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim Biophys Acta 1828:2751–2756. https://doi.org/10.1016/j.bbamem.2013.07.029

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson R. Pansarin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Kester Bull-Herenu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krahl, A.H., de Holanda, A.S.S., Krahl, D.R.P. et al. Study of the reproductive biology of an Amazonian Heterotaxis (Orchidaceae) demonstrates the collection of resin-like material by stingless bees. Plant Syst Evol 305, 281–291 (2019). https://doi.org/10.1007/s00606-019-01571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-019-01571-9

Keywords

Navigation