Plant Systematics and Evolution

, Volume 304, Issue 6, pp 793–806 | Cite as

Comparative reproductive biology reveals two distinct pollination strategies in Neotropical twig-epiphyte orchids

  • Emerson R. PansarinEmail author
  • Pedro J. Bergamo
  • Lucenilda J. C. Ferraz
  • Silvia R. M. Pedro
  • Alessandro W. C. Ferreira
Original Article


Members of Oncidiinae are widely known for their interactions with oil-collecting bees that explore lipophilic secretions on flowers. They may also be pollinated through food deception and the offering of nectar. Although data on breeding systems are available for many Oncidiinae orchids, little is known about the reproductive strategies in Rodriguezia, a neotropical genus of ca. 55 species. In this paper, we explore the reproductive biology of two species of Rodriguezia with distinctive morphologies: R. decora and R. lanceolata. Floral features, spectral reflectance, pollinators and pollination mechanisms, and breeding systems were studied. Both species are scentless and produce nectar as a reward. Floral nectar is secreted by a gland at the base of the labellum and stored into the sepaline spur. Rodriguezia decora reflects mainly in the blue and red regions of the light spectrum, while R. lanceolata reflects in the red region. Rodriguezia decora is exclusively visited and pollinated by butterflies, while Trochilidae hummingbirds are the pollinators of R. lanceolata. Pollinaria attach to the upper third of the proboscis of butterflies (R. decora), and to the bill of hummingbirds (R. lanceolata), during the collection of nectar from the spur. Both Rodriguezia species are self-sterile. Flower features and floral reflectance support the occurrence of psychophily in R. decora and ornithophily in R. lanceolata.


Floral biology Nectar Ornithophily Pollination Psychophily Reproductive biology 



The authors thank André V.L. Freitas (UNICAMP) for the identification of the butterflies. A.W.C.F. thanks FAPEMA for funding this research (grant 0430/2015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdala-Roberts L, Parra-Tabla V, Navarro J (2007) Is floral longevity influenced by reproductive costs and pollination success in Cohniella ascendens (Orchidaceae)? Ann Bot (Oxford) 100:1367–1371. CrossRefGoogle Scholar
  2. Aguiar JMRBV, Pansarin ER (2013) Does Oeceoclades maculata (Orchidaceae) reabsorbs nectar? Eur J Environm Sci 3:113–118CrossRefGoogle Scholar
  3. Aguiar JMRBV, Pansarin LM, Ackerman JD, Pansarin ER (2012) Biotic versus abiotic pollination in Oeceoclades maculata (Lindl.) Lindl. (Orchidaceae). Pl Spec Biol 27:86–95. CrossRefGoogle Scholar
  4. Almeida AS, Vieira ICG (2010) Centro de Endemismo Belém: status da vegetação remanescente e desafios para a conservação da biodiversidade e restauração ecológica. Revista Estudos Univ 36:95–111Google Scholar
  5. Bergamo PJ, Rech AR, Brito VLG, Sazima M (2016) Flower colour and visitation rates of Costus arabicus support the “bee-avoidance” hypothesis for red-reflecting hummingbird-pollinated flowers. Funct Ecol 30:710–720. CrossRefGoogle Scholar
  6. Carvalho R, Machado IC (2006) Rodriguezia bahiensis Rchb.f.: biologia floral, polinizadores e primeiro registro de polinização por moscas Acroceridae em Orchidaceae. Brazil J Bot 29:461–470. CrossRefGoogle Scholar
  7. Charanasri U, Kamemoto H (1977) Self-incompatibility in the Oncidium Alliance. Hawaii Orchid J 6:12–15Google Scholar
  8. Chase MW, Williams NH, Faria AD, Neubig KM, Amaral MCE, Whitten WM (2009) Floral convergence in Oncidiinae (Cymbidieae; Orchidaceae): an expanded concept of Gomesa and a new genus Nohawilliamsia. Ann Bot (Oxford) 109:1–16. CrossRefGoogle Scholar
  9. Cronk QCB, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:715–727. CrossRefPubMedGoogle Scholar
  10. Cruden RW, Herman-Parker SM (1979) Butterfly pollination of Caesalpinia pulcherrima, with observations on the psychophilous syndrome. J Ecol 67:155–168. CrossRefGoogle Scholar
  11. Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, OxfordGoogle Scholar
  12. Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologocally determined spectral responses in 35 species of Lepidoptera. J Insect Physiol 28:675–682CrossRefGoogle Scholar
  13. Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  14. Fahn A (1979) Secretory tissues in plants. Academic Press, LondonGoogle Scholar
  15. Fleming TH, Kress WJ (2013) The ornaments of life: coevolution and conservation in the tropics. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  16. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co, New YorkGoogle Scholar
  17. Kearns CA, Inouye D (1993) Techniques for pollinations biologists. University Press of Colorado, NiwotGoogle Scholar
  18. Köppen W (1948) Climatologia: com um estúdio de los climas de la tierra. Fondo de Cultura Econômica, MéxicoGoogle Scholar
  19. Leitão CAE, Cortelazzo AL (2008) Structural and histochemical characterization of the colleters of Rodriguezia venusta (Orchidaceae). Austral J Bot 56:161–165. CrossRefGoogle Scholar
  20. Leitão CAE, Dolder MAH, Cortelazzo AL (2014) Anatomy and histochemistry of the nectaries of Rodriguezia venusta (Lindl.). Rchb. f. (Orchidaceae). Flora 209:233–243. CrossRefGoogle Scholar
  21. Leitão-Filho HF (1992) A flora arbórea da Serra do Japi. In: Morellato LPC (ed) História natural da Serra do Japi. Editora da Unicamp/Fapesp, Campinas, pp 40–62Google Scholar
  22. Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A, Pailler T, Strasberg D, Chase MW (2010) Orthoptera, a new order of pollinator. Ann Bot (Oxford) 105:355–364. CrossRefGoogle Scholar
  23. Montalvo AM, Ackerman JD (1987) Limitations to fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19:24–31CrossRefGoogle Scholar
  24. Nunes CEP, Castro MM, Galetto L, Sazima M (2013) Anatomy of the floral nectary of ornithophilous Elleanthus brasiliensis (Orchidaceae: Sobralieae). Bot J Linn Soc 171:764–772. CrossRefGoogle Scholar
  25. Ospina-Calderón NH, Duque-Buitrago CA, Tremblay RL, Tupac-Otero J (2015) Pollination ecology of Rodriguezia granadensis (Orchidaceae). Lankesteriana 15:129–139CrossRefGoogle Scholar
  26. Pansarin ER (2003) Biologia reprodutiva e polinização em Epidendrum paniculatum Ruiz & Pavón (Orchidaceae). Revista Brasil Bot 26:203–211. CrossRefGoogle Scholar
  27. Pansarin ER, Amaral MCE (2008) Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization? Pl Biol 10:211–219. CrossRefGoogle Scholar
  28. Pansarin ER, Ferreira AWC (2015) Butterfly pollination in Pteroglossa (Orchidaceae, Orchidoideae): a comparative study on the reproductive biology of two species of a Neotropical genus of Spiranthinae. J Pl Res 128:459–468. CrossRefGoogle Scholar
  29. Pansarin ER, Pansarin LM (2010) The family Orchidaceae in the Serra do Japi, State of São Paulo, Brazil. Springer, Wien. CrossRefGoogle Scholar
  30. Pansarin ER, Pansarin LM (2011) Reproductive biology of Trichocentrum pumilum: an orchid pollinated by oil-collecting bees. Pl Biol 13:576–581. CrossRefGoogle Scholar
  31. Pansarin ER, Pansarin LM (2014) Floral biology of two Vanilloideae (Orchidaceae) primarily adapted to pollination by euglossine bees. Pl Biol 16:1104–1113. CrossRefGoogle Scholar
  32. Pansarin ER, Bittrich V, Amaral MCE (2006) At daybreak—reproductive biology and isolating mechanisms in Cirrhaea dependens (Orchidaceae). Pl Biol 8:494–502. CrossRefGoogle Scholar
  33. Pansarin ER, Pansarin LM, Santos IA (2015) Floral features, pollination biology, and breeding system of Comparettia coccinea (Orchidaceae: Oncidiinae). Flora 207:57–63. CrossRefGoogle Scholar
  34. Pansarin ER, Santos IA, Pansarin LM (2017) Comparative reproductive biology and pollinator specificity among sympatric Gomesa (Orchidaceae: Oncidiinae). Pl Biol 19:147–155. CrossRefGoogle Scholar
  35. Parra-Tabla V, Magaña-Rueda S (2000) Effects of deforestation on the reproductive ecology of Oncidium ascendens (Orchidaceae). Tropical bees: management and diversity. In: Munn, P. (ed), Proceedings of the VI international conference on tropical bees. San José de Costa Rica. IBRA, Cardiff, UKGoogle Scholar
  36. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (2009) Genera Orchidacearum 5: Epidendroideae (part two). Oxford University Press, New YorkGoogle Scholar
  37. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, PortlandGoogle Scholar
  38. Purvis MJ, Collier DC, Walls D (1964) Laboratory techniques in botany. Butterwoths, LondonGoogle Scholar
  39. Rodríguez-Gironés MA, Santamaría L (2004) Why are so many birdflowers red? PLoS Biol 2:e350. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rodríguez-Robles JA, Meléndez EJ, Ackerman JD (1992) Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). Amer J Bot 79:1009–1017CrossRefGoogle Scholar
  41. Ruschi A (1989) Aves do Brasil, Beija-flores. Vol. IV. Editora Expressão e Cultura, Rio de JaneiroGoogle Scholar
  42. Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol 43:247–249CrossRefGoogle Scholar
  43. Shrestha M, Dyer AG, Boyd-Gerny S, Wong BBM, Burd M (2013) Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol 198:30–310. CrossRefGoogle Scholar
  44. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68:301–322. CrossRefGoogle Scholar
  45. Singer RB, Koehler S (2003) Notes on the pollination of Notylia nemorosa (Orchidaceae): Do pollinators necessarily promote cross pollination? J Pl Res 116:19–25. CrossRefGoogle Scholar
  46. Singer RB, Sazima M (2000) The pollination of Stenorrhynchos lanceolatus (Aublet) L. C. Rich. (Orchidaceae: Spiranthinae) by hummingbirds in southeastern Brazil. Pl Syst Evol 223:221–227CrossRefGoogle Scholar
  47. Stiles FG (1981) Geographical aspects of bird- flower coevolution with particular reference to Central America. Ann Missouri Bot Gard 68:323–351CrossRefGoogle Scholar
  48. Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191–205CrossRefGoogle Scholar
  49. Telles FJ, Kelber M, Rodríguez-Gironés MA (2016) Wavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum. J Exp Biol 219:553–560. CrossRefPubMedGoogle Scholar
  50. Torretta JP, Gomiz NE, Aliscioni SS, Bello ME (2011) Biología reproductiva de Gomesa bifolia (Orchidaceae, Cymbidieae, Oncidiinae). Darwiniana 49:16–24Google Scholar
  51. Vale A, Navarro L, Rojas D, Álvarez JC (2011) Breeding system and pollination by mimicry of the orchid Tolumnia guibertiana in Western Cuba. Pl Spec Biol 26:163–173. CrossRefGoogle Scholar
  52. van der Cingel NA (2001) An atlas of orchid pollination. America, Africa, Asia and Australia. Balkema Publishers, RottherdamGoogle Scholar
  53. van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami, Coral GablesGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Emerson R. Pansarin
    • 1
    Email author
  • Pedro J. Bergamo
    • 2
  • Lucenilda J. C. Ferraz
    • 3
  • Silvia R. M. Pedro
    • 1
  • Alessandro W. C. Ferreira
    • 4
  1. 1.Departamento de Biologia, Faculdade de Filosofia, Ciências e LetrasUniversidade de São PauloRibeirão PretoBrazil
  2. 2.University of CampinasCampinasBrazil
  3. 3.Centro Universitário de PinheiroUniversidade Federal do MaranhãoPinheiroBrazil
  4. 4.Departamento de BiologiaUniversidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations