Skip to main content
Log in

Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Generic relationships in the Pyrinae (equivalent to subfamily Maloideae) were assessed with six chloroplast regions and five nuclear regions. We also plotted 12 non-molecular characters onto molecular phylogenies. Chloroplast DNA trees are incongruent with those from nuclear regions, as are most nuclear regions with one another. Some of this conflict may be the result of hybridization, which occurs between many genera of Pyrinae in the present and may have occurred in the past, and duplication of nuclear loci. Sequence divergence between genera of Pyrinae, which is significantly less than that between genera of another large clade in Rosaceae, the Rosoideae, is concentrated in terminal branches, with short internal branches. This pattern is consistent with an ancient, rapid radiation, which has also been hypothesized from the fossil record. Even with about 500,000 bp of sequence, our results resolve only several small groups of genera and leave much uncertainty about phylogenetic relationships within Pyrinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldasoro J. J., Aedo C. and Navarro C. (2005). Phylogenetic and phytogeographical relationships in Maloideae (Rosaceae) based on morphological and anatomical characters. Blumea 50: 3–15

    Google Scholar 

  • Campbell C. S., Baldwin B. G., Donoghue M. J. and Wojciechowski M. F. (1995). A phylogeny of the genera of Maloideae (Rosaceae): Evidence from Internal Transcribed Spacers of nuclear ribosomal DNA sequences and congruence with morphology. Amer. J. Bot. 82: 903–918

    Article  CAS  Google Scholar 

  • Challice J. (1973). Phenolic compounds of the subfamily Pomoideae: A chemotaxonomic survey. Phytochemistry 12: 1095–1101

    Article  CAS  Google Scholar 

  • Challice J. S. (1974). Rosaceae chemotaxonomy and the origins of the Pomoideae. Bot. J. Linn. Soc. 69: 239–259

    Google Scholar 

  • Challice J. and Kovanda M. (1978). Flavonoids as markers of taxonomic relationships in the genus Sorbus in Europe. Preslia 50: 305–320

    Google Scholar 

  • Chevreau E., Lespinasse Y. and Gallet M. (1985). Inheritance of pollen enzymes and polyploid origin of apple (Malus x domestica Borkh.). Theor. Appl. Genet. 71: 268–277

    CAS  Google Scholar 

  • Donoghue M. J. and Sanderson M. J. (1992). The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. (eds) Molecular systematics of plants, pp 340–368. Chapman and Hall, New York

    Google Scholar 

  • Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15

    Google Scholar 

  • Evans R. C. (1999) Molecular, morphological, and ontogenetic evaluation of relationships and evolution in Rosaceae. Ph.D. thesis, Botany Department, University of Toronto.

  • Evans R. C., Alice L. A., Campbell C. S., Kellogg E. A. and Dickinson T. A. (2000). The granule-bound starch synthase (GBSSI) gene in Rosaceae: multiple putative loci and phylogenetic utility. Molec. Phylogenet. Evol. 17: 388–400

    Article  PubMed  CAS  Google Scholar 

  • Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Rosaceae: Maloideae) is clarified by DNA sequence data from duplicated GBSSI Genes. Amer. J. Bot. 89: 1478–1484

    CAS  Google Scholar 

  • Evans R. C. and Dickinson T. A. (1999). Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012

    Article  Google Scholar 

  • Evans R. C. and Dickinson T. A. (2005). Floral ontogeny and morphology in Gillenia (``Spiraeoideae'') and subfamily Maloideae C. Weber (Rosaceae). Int. J. Pl. Sci. 166: 427–447

    Article  Google Scholar 

  • Farr D. F. (1989). Fungi on plants and plant products in the United States. APS Press, St. Paul, Minn

    Google Scholar 

  • Farr D. F., Rossman A. Y., Palm M. E., McCray E. B. (2005) Fungal databases, Systematic Botany & Mycology Laboratory. Agricultural Research Service, United States Dept. of Agriculture.

  • Felsenstein J. (1978). Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401–410

    Article  Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Fiala K. I. and Sokal R. R. (1985). Factors determining the accuracy of cladogram estimation: evaluation using computer simulation. Evolution 39: 609–622

    Article  Google Scholar 

  • Fishbein M., Hibsch-Jetter C., Soltis D. E. and Hufford L. (2001). Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation. Syst. Biol. 50: 817–847

    Article  PubMed  CAS  Google Scholar 

  • Fishbein M. and Soltis D. E. (2004). Further resolution of the rapid radiation in Saxifragales (angiosperms, eudicots) supported by mixed-model Bayesian analysis. Syst. Bot. 29: 883–891

    Article  Google Scholar 

  • Godron D. A. (1874). De l'hybridité dans le genre Sorbier. Rev. Sci. Nat. 4: 443–447

    Google Scholar 

  • Graham S. (1997) Phylogenetic analyses of breeding-system evolution in heterostylous monocotyledons. Ph.D. thesis, Botany Department, University of Toronto.

  • Hasegawa M., Kishino H. and Yano T. (1985). Dating of the human-ape split by a molecular clock of mitochondrial DNA. J. Molec. Evol. 21: 160–174

    Article  Google Scholar 

  • Huelsenbeck J. P. (1995). Performance of phylogenetic methods in simulation. Syst. Biol. 44: 17–48

    Article  Google Scholar 

  • Hutchinson J. (1964). The genera of flowering plants, vol. 1, Dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Ishikawa S., Kato S., Imakawa S., Mikami T. and Shimamoto Y. (1992). Organelle DNA polymorphisms in cultivated apple and rootstocks. Theor. Appl. Genet. 83: 963–967

    Article  CAS  Google Scholar 

  • Jones G. N. (1946). American species of Amelanchier. Urbana, Illinois

    Google Scholar 

  • Kalkman C. (1973). The Malesian species of the subfamily Maloideae (Rosaceae). Blumea 21: 413–442

    Google Scholar 

  • Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) The families and genera of vascular plants, pp 343–386. Springer, Berlin

    Google Scholar 

  • Kovanda M. (1965). On the generic limits in the Maloideae. Preslia 37: 27–34

    Google Scholar 

  • Liljefors A. (1934). Űber normale und apospore Embryosackentwicklung in der Gattung Sorbus, nebst einigen Bemerkungen űber die Chromosomenzahlen. Svensk Bot. Tidskr. 28: 290–299

    Google Scholar 

  • Liljefors A. (1953). Studies on propagation, embryology and pollination in Sorbus. Acta Horti Berg. 16: 277–329

    Google Scholar 

  • Linder C. R. and Rieseberg L. H. (2004). Reconstructing patterns of reticulate evolution in plants. Amer. J. Bot. 91: 1700–1708

    Google Scholar 

  • Lo E., Stefanovic S., Dickinson T. A., in press. Crataegus and Mespilus (Pyreae, Rosaceae) – two genera or one? Syst. Bot.

  • McDade L. A. (1995). Hybridization and phylogenetics. In: Hoch, P. C. and Stephenson, A. G. (eds) Experimental and molecular approaches to plant biosystematics, pp 305–331. Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Morgan D. R., Soltis D. E. and Robertson K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890–903

    Article  CAS  Google Scholar 

  • Nelson-Jones E. B., Briggs D. and Smith A. G. (2002). The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 105: 953–963

    Article  PubMed  CAS  Google Scholar 

  • Oddou-Muratorio S., Petit R. J., Guerroue B. L., Guesnet D. and Demesure B. (2001). Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55: 1123–1135

    PubMed  CAS  Google Scholar 

  • Petit R. J., Pineau E., Demesure B., Bacillieri R., Ducousso A., Kremer A. (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl. Acad. Sci. USA 94.

  • Phipps J. B., Robertson K. R., Rohrer J. R. and Smith P. G. (1991). Origins and evolution of subfamily Maloideae (Rosaceae). Syst. Bot. 16: 303–332

    Article  Google Scholar 

  • Posada D. and Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  PubMed  CAS  Google Scholar 

  • Potter D., Eriksson T., Evans R. C., Oh S.-H., Smedmark J., Morgan D., Kerr M., Robertson K. R., Arsenault M., Dickinson T. A., Campbell C. S., In press. Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5–43.

  • Rambaut A. (2002). Se-Al: sequence alignment editor. University of Oxford, Oxford, England

    Google Scholar 

  • Raspé O. A., Jacquemart L. and De Sloover J. (1998). Isozymes in Sorbus aucuparia (Rosaceae: Maloideae): genetic analysis and evolutionary significance of zymograms. Int. J. Pl. Sci. 159: 627–636

    Article  Google Scholar 

  • Raspé O. and Kohn J. R. (2002). S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae). Heredity 88: 458–465

    Article  PubMed  Google Scholar 

  • Rieseberg L. H. and Soltis D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Pl. 5: 65–84

    Google Scholar 

  • Robertson K. R., Phipps J. B., Rohrer J. R. and Smith P. G. (1991). A synopsis of genera of the Maloideae (Rosaceae). Syst. Bot. 16: 376–394

    Article  Google Scholar 

  • Roemer M. J. (1847) Familiarum naturalium regni vegetabilis synopses monographicae. III. Rosi-florae. Amygdalacearum et Pomacearum. Weimar, Landes-Industrie-Comptoir.

  • Rohrer J. R., Robertson K. R. and Phipps J. B. (1991). Variation in structure among fruits of Maloideae (Rosaceae). Amer. J. Bot. 78: 1617–1635

    Article  Google Scholar 

  • Rohrer J. R., Robertson K. R. and Phipps J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Amer. J. Bot. 81: 574–581

    Article  Google Scholar 

  • Rokas A., Kruger D. and Carroll S. B. (2005). Animal evolution and molecular signature of radiation compressed in time. Science 310: 1933–1938

    Article  PubMed  Google Scholar 

  • Ronquist F. and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sang T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Molec. Biol. 37: 121–147

    Article  CAS  Google Scholar 

  • Savile D. B. O. (1979). Fungi as aids in higher plant classification. Bot. Rev. 45: 380–495

    Article  Google Scholar 

  • Sax K. (1931). The origin and relationships of the Pomoideae. J. Arnold Arbor. 12: 3–22

    Google Scholar 

  • Sax K. (1932). Chromosome relationships in the Pomoideae. J. Arnold Arbor. 13: 363–367

    Google Scholar 

  • Sax K. (1933). The origin of the Pomoideae. Proc. Amer. Soc. Hort. Sci. 30: 147–150

    Google Scholar 

  • Simmmons M. P. and Ochoterena H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49: 369–381

    Article  Google Scholar 

  • Spjut R. W. (1994). A systematic treatment of fruit types. Bronx, New York

    Google Scholar 

  • Sterling C. (1964). Comparative morphology of the carpel in the Rosaceae. III. Pomoideae: Crataegus, Hesperomeles, Mespilus, Osteomeles. Amer. J. Bot. 51: 705–712

    Article  Google Scholar 

  • Sterling C. (1965a). Comparative morphology of the carpel in the Rosaceae. IV. Pomoideae: Chamaemeles, Cotoneaster, Dichotomanthes, Pyracantha. Amer. J. Bot. 52: 47–54

    Article  Google Scholar 

  • Sterling C. (1965b). Comparative morphology of the carpel in the Rosaceae. V. Pomoideae: Amelanchier, Aronia, Malacomeles, Malus, Peraphyllum, Pyrus, Sorbus. Amer. J. Bot. 52: 418–426

    Article  Google Scholar 

  • Sterling C. (1965c). Comparative morphology of the carpel in the Rosaceae. VI. Pomoideae: Eriobotrya, Heteromeles, Photinia, Pourthiaea, Raphiolepis, Stranvaesia. Amer. J. Bot. 52: 938–946

    Article  Google Scholar 

  • Sterling C. (1966). Comparative morphology of the carpel in the Rosaceae. VII. Pomoideae: Chaenomeles, Cydonia, Docynia. Amer. J. Bot. 53: 225–231

    Article  Google Scholar 

  • Swofford D. L. (2001). PAUP*: Phylogenetic Analysis Using Parsimony. Sinauer Associates, Inc, Sunderland, MA

    Google Scholar 

  • Talent N. and Dickinson T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Canad. J. Bot. 83: 1268–1304

    Article  CAS  Google Scholar 

  • Vidal J. E. (1965). Notes sur quelques Rosacées Asiatique (II) (Photinia, Stranvaesia). Adansonia 5: 221–237

    Google Scholar 

  • Weeden N. and Lamb R. (1987). Genetics and linkage analysis of 19 isozyne loci in apple. J. Amer. Hort. Soc. 112: 865–872

    CAS  Google Scholar 

  • Wilson M. A., Grant B. and Clegg M. T. (1990). Chloroplast DNA evolves slowly in the palm family (Arecaceae). Molec. Biol. Evol. 7: 303–314

    PubMed  CAS  Google Scholar 

  • Wolfe J. A. and Wehr W. (1988). Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12: 177–200

    Google Scholar 

  • Yang Z. (1994a). Phylogenetic analysis using parsimony and likelihood methods. J. Molec. Evol. 39: 294–307

    Google Scholar 

  • Yang Z. (1994b). Estimating the pattern of nucleotide substitution. Molec. Evol. 39: 105–111

    Google Scholar 

  • Zhang L. Q., Pond S. K. and Gaut B. S. (2001). A survey of the molecular evolutionary dynamics of twenty-five multigene families from four grass taxa. J. Molec. Evol. 52: 144–156

    PubMed  CAS  Google Scholar 

  • Zhang S.-Y. (1992). Wood anatomy of the Rosaceae. Rijksherbarium/Hortus Botanicus, Leiden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, C., Evans, R., Morgan, D. et al. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Syst. Evol. 266, 119–145 (2007). https://doi.org/10.1007/s00606-007-0545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0545-y

Keywords

Navigation