Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 5–43 | Cite as

Phylogeny and classification of Rosaceae

  • D. PotterEmail author
  • T. Eriksson
  • R. C. Evans
  • S. Oh
  • J. E. E. Smedmark
  • D. R. Morgan
  • M. Kerr
  • K. R. Robertson
  • M. Arsenault
  • T. A. Dickinson
  • C. S. Campbell


Phylogenetic relationships among 88 genera of Rosaceae were investigated using nucleotide sequence data from six nuclear (18S, gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and likelihood-based Bayesian approaches. The results were used to examine evolution of non-molecular characters and to develop a new phylogenetically based infrafamilial classification. As in previous molecular phylogenetic analyses of the family, we found strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets. We recognize three subfamilies in Rosaceae: Rosoideae, including Filipendula, Rubus, Rosa, and three tribes; Dryadoideae, comprising the four actinorhizal genera; and Spiraeoideae, comprising Lyonothamnus and seven tribes. All genera previously assigned to Amygdaloideae and Maloideae are included in Spiraeoideae. Three supertribes, one in Rosoideae and two in Spiraeoideae, are recognized.


Rosodae Pyrodae Kerriodae chromosome number fruit type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436 CrossRefGoogle Scholar
  2. Baillon H. (1869). Histoire des plantes, vol. 1. Librairie de L. Hachette, Paris Google Scholar
  3. Benson D. R. and Silvester W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57: 293–319 PubMedGoogle Scholar
  4. Bortiri E., Oh S., Gao F. and Potter D. (2002). The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Amer. J. Bot. 89: 1697–1708 Google Scholar
  5. Bortiri E., Oh S., Jiang J., Baggett S., Granger A., Weeks C., Buckingham M., Potter D. and Parfitt D. (2001). Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26: 797–807 Google Scholar
  6. Boss P. K., Gardner R. C., Janssen B. J. and Ross S. P. (1995). An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Pl. Molec. Biol. 27: 429–433 CrossRefGoogle Scholar
  7. Campbell C. S., Donoghue M. J., Baldwin B. G. and Wojciechowski M. F. (1995). Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Amer. J. Bot. 27: 903–918 CrossRefGoogle Scholar
  8. Campbell C. S., Evans R. C., Morgan D. R., Dickinson T. A. and Arsenault M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Pl. Syst. Evol. 266: 119–145 CrossRefGoogle Scholar
  9. Chevalier T., de Rigal D., Mbeguie-AMbeguie D., Gauillard F., Richard-Forget F., and Fils-Lycaon B. R. (1999). Molecular cloning and characterization of apricot fruit polyphenol oxidase. Pl. Physiol. (Lancaster) 119: 1261–1270 CrossRefGoogle Scholar
  10. Chevreau E. and Laurens F. (1987). The pattern of inheritance in apple (Malus × domestica Borkh.): further results from leaf isozyme analysis. Theor. Appl. Genet. 75: 90–95 CrossRefGoogle Scholar
  11. Chevreau E., Lespinasse Y. and Gallet M. (1985). Inheritance of pollen enzymes and polyploid origin of apple (Malus × domestica Borkh.). Theor. Appl. Genet. 71: 268–277 Google Scholar
  12. Cronquist A. (1981). An integrated system of classification of flowering plants. Columbia University Press, New York Google Scholar
  13. Cuatrecasas J. (1970). Flora Neotropica Monograph No. 2, Brunelliaceae. Hafner, Darien, Connecticut Google Scholar
  14. Du Mortier B.-C. (1827). Florula belgica: operis majoris prodromus. J. Casterman, Tournay Google Scholar
  15. Eriksson T., Donoghue M. J. and Hibbs M. S. (1998). Phylogenetic analysis of Potentilla using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS), and implications for the classification of Rosoideae (Rosaceae). Pl. Syst. Evol. 211: 155–179 CrossRefGoogle Scholar
  16. Eriksson T., Hibbs M. S., Yoder A. D., Delwiche C. F. and Donoghue M. J. (2003). The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. Int. J. Pl. Sci. 164: 197–211 CrossRefGoogle Scholar
  17. Evans R. C. (1999) Molecular, morphological, and ontogenetic evaluation of relationships and evolution in the Rosaceae. Ph.D. dissertation, University of Toronto, Toronto.Google Scholar
  18. Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer. J. Bot. 89: 1478–1484 Google Scholar
  19. Evans R. C. and Dickinson T. A. (1999a). Floral ontogeny and morphology in subfamily Amygdaloideae T. and G. (Rosaceae). Int. J. Pl. Sci. 160: 955–979 CrossRefGoogle Scholar
  20. Evans R. C. and Dickinson T. A. (1999b). Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012 CrossRefGoogle Scholar
  21. Evans R. C. and Dickinson T. A. (2005). Floral ontogeny and morphology in Gillenia (``Spiraeoideae'') and subfamily Maloideae C. Weber (Rosaceae). Int. J. Pl. Sci. 166: 427–447 CrossRefGoogle Scholar
  22. Evans R. C., Alice L. A., Campbell C. S., Kellogg E. A. and Dickinson T. A. (2000). The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Molec. Phylogenet. Evol. 17: 388–400 PubMedCrossRefGoogle Scholar
  23. Farr D. F. (1989). Fungi on plants and plant products in the United States. APS Press, St. Paul, Minnesota Google Scholar
  24. Farr D.F.,Rossman A.Y., Palm M. E.,McCray E. B. (2005) Fungal databases, systematic botany and mycology laboratory. Agricultural Research Service, United States Department of Agriculture, available at
  25. Gladkova V. N. (1972). On the origin of subfamily Maloideae. Bot. Zhurn. 57: 42–49 Google Scholar
  26. Gray A. (1842). The botanical text-book. Putnam, New York Google Scholar
  27. Greuter W., McNeil J., Barrie F. R., Burdet H. M., Demoulin V., Filgueiras T. S., Nicolson D. H., Silva P. C., Skog J. E., Trehane P., Turland N. J., Hawksworth D. L. (eds.) (2000) International code of botanical nomeclature. (Tokyo Code). Koeltz Scientific Books, Königstein.Google Scholar
  28. Haruta M., Murata M., Hiraide A., Kadokura H., Yamasaki M., Sakuta M., Shimizu S. and Homma S. (1998). Cloning genomic DNA encoding apple polyphenol oxidase and comparison of the gene product in Escherichia coli and in apple. Biosci. Biotechnol. Biochem. 62: 358–362 PubMedCrossRefGoogle Scholar
  29. Haruta M., Murata M., Kadokura H. and Homma S. (1999). Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees. Phytochemistry 50: 1021–1025 PubMedCrossRefGoogle Scholar
  30. Helfgott D. M., Francisco-Ortega J, Santos-Guerra A., Jansen R. K. and Simpson B. B. (2000). Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia based on ITS sequence data. Syst. Bot. 25: 82–97 CrossRefGoogle Scholar
  31. Henrickson J. (1986). Notes on Rosaceae. Phytologia 468: 60 Google Scholar
  32. Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755 PubMedCrossRefGoogle Scholar
  33. Hutchinson J. (1964). The genera of flowering plants, vol. 1, Dicotyledons. Clarendon Press, Oxford Google Scholar
  34. Hutchinson J. (1969). Evolution and phylogeny of flowering plants. Academic Press, London Google Scholar
  35. International Plant Names Index (2006) Published on the internet at
  36. Judd W. S. and Olmstead R. G. (2004). A survey of tricolpate (eudicot) phylogenetic relationships. Amer. J. Bot. 91: 1627–1644 Google Scholar
  37. Kalkman C. (1965). The Old World species of Prunus subgen. Laurocerasus including those formerly referred to Pygeum. Blumea 13: 1–115 Google Scholar
  38. Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) The families and genera of vascular plants, vol. 6, Flowering plants - Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales, pp 343–386. Springer, Berlin Google Scholar
  39. Kerr M. S. (2004) A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Ph.D. dissertation, University of Maryland, College Park.Google Scholar
  40. Koehne E. (1890). Die Gattungen der Pomaceen. Gaertner, Berlin Google Scholar
  41. Kubitzki K. (2004). The families and genera of vascular plants, vol. 6, Flowering plants – Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer, Berlin Google Scholar
  42. Lawrence G. H. M. (1951). Taxonomy of vascular plants. Macmillan, New York Google Scholar
  43. Lee S. and Wen J. (2001). A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer. J. Bot. 88: 150–160 CrossRefGoogle Scholar
  44. Mabberley D. J. (2002). Potentilla and Fragaria (Rosaceae) reunited. Telopea 9: 793–801 Google Scholar
  45. Maddison W. P. and Maddison D. R. (2003). MacClade, version 4.06. Analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, Massachusetts Google Scholar
  46. Missouri Botanical Garden (2005) Index to Plant Chromosome Numbers Database, available at
  47. Morgan D. R., Soltis D. E. and Robertson K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890–903 CrossRefGoogle Scholar
  48. Nylander J. A. A. (2005) MrAIC, version 1.4., available at
  49. Oh S. (2006). Neillia includes Stephanandra (Rosaceae). Novon 16: 91–95 CrossRefGoogle Scholar
  50. Oh S. and Potter D. (2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. Amer. J. Bot. 92: 179–192 Google Scholar
  51. Oh S. and Potter D. (2006). Description and phylogenetic position of a new angiosperm family, Guamatelaceae, inferred from chloroplast rbcL, atpB and matK sequences. Syst. Bot. 31: 730–738 CrossRefGoogle Scholar
  52. Pankhurst R. (2005) Rosaceae database. On-line searchable version available through the International Organization for Plant Information’s Provisional Global Plant Checklist at:
  53. Potter D. (2003). Molecular phylogenetic studies in Rosaceae. In: Sharma, A. K. and Sharma, A. (eds) Plant genome: Biodiversity and evolution, vol. I, Pt. A: Phanerogams, pp 319–351. Science Publishers, Inc. Enfield, New Hampshire Google Scholar
  54. Potter D., Gao F., Bortiri P. E., Oh S. and Baggett S. (2002). Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Pl. Syst. Evol. 231: 77–89 CrossRefGoogle Scholar
  55. Potter D., Still S. M., Ballian D. and Kraigher H. (2006). Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Pl. Syst. Evol. 266: 105–118 CrossRefGoogle Scholar
  56. Rambaut A. (1996) Se-Al: Sequence Alignment Editor. Available at
  57. Raspé O., Jacquemart A.-L. and De Sloover J. (1998). Isozymes in Sorbus aucuparia (Rosaceae: Maloideae): genetic analysis and evolutionary significance of zymograms. Int. J. Pl. Sci. 159: 627–636 CrossRefGoogle Scholar
  58. Reveal J. L. (2004) Index nominum supragenericorum plantarum vascularum.?http://www. gen.html.Google Scholar
  59. Robertson K. R., Phipps J. B. and Rohrer J. R. (1991). A synopsis of genera in Maloideae (Rosaceae). Syst. Bot. 16: 376–394 CrossRefGoogle Scholar
  60. Rohrer J. R., Robertson K. R. and Phipps J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Amer. J. Bot. 81: 574–581 CrossRefGoogle Scholar
  61. Roitman A., Flaks B. R., Fradkina L. Z. and Federov A. A. (1974). Chromosome numbers of flowering plants. Ger. Otto Koeltz Science Publishers, Koenigstein Google Scholar
  62. Savile D. B. O. (1979). Fungi as aids in higher plant classification. Bot. Rev. 45: 380–495 CrossRefGoogle Scholar
  63. Sax K. (1933). The origin of the Pomoideae. Proc. Amer. Soc. Hort. Sci. 30: 147–150 Google Scholar
  64. Schulze-Menz G. K. (1964). Rosaceae. In: Melchior, H. (eds) Engler's Syllabus der Pflanzenfamilien II, pp 209–218. Gebrüder Borntraeger, Berlin Google Scholar
  65. Shaw J. and Small R. L. (2004). Addressing the “hardest puzzle in American pomology:” phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Amer. J. Bot. 91: 985–996 Google Scholar
  66. Simpson C .G., Macrae E. and Gardner R. C. (1995). Cloning of a polygalacturonase inhibiting protein from kiwifruit (GenBank Z49063). Pl. Physiol. 108: 1748 Google Scholar
  67. Smedmark J. E. E. (2006). Recircumscription of Geum L. (Colurieae: Rosaceae). Bot. Jahrb. Syst. 126: 409–417 CrossRefGoogle Scholar
  68. Smedmark J. E. E. and Eriksson T. (2002). Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst. Bot. 27: 303–317 Google Scholar
  69. Smedmark J. E. E., Eriksson T. and Bremer B. (2005). Allopolyploid evolution in Geinae (Colurieae: Rosaceae) – building reticulate species trees from bifurcating gene trees. Organisms Divers. Evolut. 5: 275–283 CrossRefGoogle Scholar
  70. Smedmark J. E. E., Eriksson T., Evans R. C. and Campbell C. S. (2003). Ancient allopolypoloid speciation in Geinae (Rosaceae): evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences. Syst. Biol. 52: 374–385 PubMedGoogle Scholar
  71. Soltis D. E., Soltis P. S., Chase M. W., Mort M. E., Albach D. C., Zanis M., Savolainen V., Hahn W. H., Hoot S. B., Fay M. F., Axtell M., Swensen S. M., Prince L. M., Kress W. J., Nixon K. C. and Farris J. S. (2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381–461 CrossRefGoogle Scholar
  72. Spjut R. W. (1994). A systematic treatment of fruit types. Mem. New York Bot. Gard. 70: 1–182 Google Scholar
  73. Staden R. (1996). The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241 PubMedGoogle Scholar
  74. Sterling C. (1964). Comparative morphology of the carpel in the Rosaceae. III. Pomoideae: Crataegus, Hesperomeles, Mespilus, Osteomeles. Amer. J. Bot. 51: 705–712 CrossRefGoogle Scholar
  75. Sterling C. (1965a). Comparative morphology of the carpel in the Rosaceae. IV. Pomoideae: Chamaemeles, Cotoneaster, Dichotomanthes, Pyracantha. Amer. J. Bot. 52: 47–54 CrossRefGoogle Scholar
  76. Sterling C. (1965b). Comparative morphology of the carpel in the Rosaceae. V. Pomoideae: Amelanchier, Aronia, Malacomeles, Malus, Peraphyllum, Pyrus, Sorbus. Amer. J. Bot. 52: 418–426 CrossRefGoogle Scholar
  77. Sterling C. (1965c). Comparative morphology of the carpel in the Rosaceae. VI. Pomoideae: Eriobotrya, Heteromeles, Photinia, Pourthiaea, Raphiolepis, Stranvaesia. Amer. J. Bot. 52: 938–946 CrossRefGoogle Scholar
  78. Sterling C. (1966). Comparative morphology of the carpel in the Rosaceae. VII. Pomoideae: Chaenomeles, Cydonia, Docynia. Amer. J. Bot. 53: 225–231 CrossRefGoogle Scholar
  79. Stotz H. U., Powell A. L. T., Damon S. E., Greve L. C., Bennett A. B. and Labavitch J. M. (1993). Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. Bartlett. Pl. Physiol. (Lancaster) 102: 133–138 Google Scholar
  80. Stotz H. U., Contos J. J., Powell A. L., Bennett A. B. and Labavitch J. M. (1994). Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Pl. Molec. Biol. 25: 607–617 CrossRefGoogle Scholar
  81. Swofford D. L. (2002). PAUP* Phylogenetic analysis using (* and other methods) parsimony Version 4. Sinauer Associates, Sunderland, Massachusetts Google Scholar
  82. Taberlet P., Gielly L., Patou G. and Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109 CrossRefGoogle Scholar
  83. Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York Google Scholar
  84. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997). The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876–4882 PubMedCrossRefGoogle Scholar
  85. Toubart P., Desiderio A., Salvi G., Cervone F., Daroda L. and De Lorenzo G. (1992). Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Pl. J. 2: 367–373 Google Scholar
  86. Vanden Heuvel B. D., Benson D. R., Bortiri E. and Potter D. (2004). Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). Canad. J. Microbiol. 50: 989–1000 CrossRefGoogle Scholar
  87. Wallaart R. A. M. (1980). Distribution of sorbitol in Rosaceae. Phytochemistry 19: 2603–2610 CrossRefGoogle Scholar
  88. Weeden N. and Lamb R. (1987). Genetics and linkage analysis of 19 isozyme loci in apple. J. Amer. Soc. Hort. Sci. 112: 865–872 Google Scholar
  89. Wiens J. J. (2003). Missing data, incomplete taxa and phylogenetic accuracy. Syst. Biol. 52: 528–538 PubMedCrossRefGoogle Scholar
  90. Xia X. and Xie Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Heredity 92: 371–373 CrossRefGoogle Scholar
  91. Yao C., Conway W. S. and Sams C. E. (1995). Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Phytopathology 85: 1373–1377 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Potter
    • 1
    Email author
  • T. Eriksson
    • 2
  • R. C. Evans
    • 3
  • S. Oh
    • 4
  • J. E. E. Smedmark
    • 2
  • D. R. Morgan
    • 5
  • M. Kerr
    • 6
  • K. R. Robertson
    • 7
  • M. Arsenault
    • 8
  • T. A. Dickinson
    • 9
  • C. S. Campbell
    • 8
  1. 1.Department of Plant Sciences, Mail Stop 2University of CaliforniaDavisUSA
  2. 2.Bergius FoundationRoyal Swedish Academy of SciencesStockholmSweden
  3. 3.Biology DepartmentAcadia UniversityWolfvilleCanada
  4. 4.Department of BiologyDuke UniversityDurhamUSA
  5. 5.Department of BiologyUniversity of West GeorgiaCarrolltonUSA
  6. 6.Department of Cell Biology and Molecular GeneticsUniversity of MarylandMarylandUSA
  7. 7.Center for BiodiversityIllinois Natural History SurveyChampaignUSA
  8. 8.Department of Biological SciencesUniversity of MaineOronoUSA
  9. 9.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada

Personalised recommendations