Persistence property and analyticity for a shallow-water model with the coriolis effect in weighted spaces

Abstract

In this paper, we consider an asymptotic model for wave propagation in shallow water with the effect of the Coriolis force is derived from the governing equation in two dimensional flows. Motivated by the eariler works (Brandolese in Int Math Res Not 22:5161–5181, 2012; Escauriaza et al. in J Funct Anal 244:504–535, 2007; Himonas et al. in Commun Math Phys 271:511–522, 2007; Himonas and Misiolek in Math Ann 327:575–584, 2003; Kohlmann in Z Angew Math Mech 94:264–272, 2014), we demonstrate the persistence results for the solution in weighted \(L^p\) spaces for a large classs of moderate weights. We also discuss the spatial asymptotic profiles of solutions to this model equation. Finally, with analytic initial data, we show that its solutions are analytic in both variables, globally in space and locally in time.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Baouendi, M.S., Goulaouic, C.: Remarks on the abstract form of nonlinear Cauchy–Kowalevski theorems. Commun. Partial Differ. Equ. 2, 1151–1162 (1977)

    MATH  Article  Google Scholar 

  3. 3.

    Baouendi, M.S., Goulaouic, C.: Sharp estimates for analytic pseudodifferential operators and applications to Cauchy problems. J. Differ. Equ. 48, 241–268 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive media. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)

    MATH  Article  Google Scholar 

  5. 5.

    Brandolese, L.: Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces. Int. Math. Res. Not. 22, 5161–5181 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Busuioc, V.: On second grade fluids with vanishing viscosity. Comput. Rend. Acad. Sci. Ser. I-Math. 328, 1241–1246 (1999)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bona, J.L., Tzvetkov, N.: Sharp well-posedness results for the BBM equation. Discrete Cont. Dyn. Syst. Ser. A 23, 1241–1252 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked soliton. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Camassa, R., Holm, D.D., Hyman, J.M.: A new integral shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    MATH  Article  Google Scholar 

  10. 10.

    Chen, M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Constantin, A.: Nonlinear water waves with applications to wave-current interactions and Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, 81 SIAM, Philadelphia (2012)

  12. 12.

    Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, River Edge, New Jersey (1999)

    Google Scholar 

  22. 22.

    Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the k-generalized KdV equations. J. Funct. Anal. 244(2), 504–535 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Fan, L., Gao, H., Liu, Y.: On the rotation-two-component Camassa–Holm system modeling the equatorial water waves. Adv. Math. 291, 59–89 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their bäcklund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Geyer, A., Quirchmayr, R.: Shallow water equations for equatorial tsunami waves. Philos. Trans. R. Soc. A 376, 20170100 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Himonas, A.A., Misiolek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Commun. Math. Phys. 271(2), 511–522 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Himonas, A.A., Misiolek, G.: Analyticity of the Cauchy problem for an integrable evolution equation. Math. Ann. 327, 575–584 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Ionescu-Kruse, D.: Variational derivation of a geophysical Camassa-Holm type shallow water equation. Nonlinear Anal. 156, 286–294 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Ivanov, R.: Hamiltonian model for coupled surface and internal waves in the presence of currents. Nonlinear Anal. Real World Appl. 34, 316–334 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Kohlmann, M.: The two-component Camassa-Holm system in weighted \(L_p\) spaces. Z. Angew. Math. Mech. 94(3), 264–272 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Kano, K., Nishida, T.: A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math 23, 389–413 (1986)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Korteweg, D.J., de Vries, G.: On the change of the form of long waves advancing in rectangular channel, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Lannes, D.: The Water Waves Problem. Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

    Google Scholar 

  35. 35.

    Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Luo, T., Liu, Y., Mi, Y., Moon, B.: On a shallow-water model with the Coriolis effect. (2018, submitted)

  38. 38.

    Miura, R.M.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 18, 412–459 (1976)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Ni, L., Zhou, Y.: A new asymptotic behavior for solutions of the Camassa-Holm equation. Proc. Am. Math. Soc. 140, 607–614 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

  42. 42.

    Yan, K., Yin, Z.: Analytic solutions of the Cauchy problem for two-component shallow water system. Math. Z. 269, 1113–1127 (2011). https://doi.org/10.1007/s00209-010-0775-5

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Yan, K., Yin, Z.: Analyticity of the Cauchy problem for two-component Hunter-Saxton systems. Nonlinear Anal. 75, 253–259 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Zhou, S.: Persistence properties for a generalized Camassa-Holm equation in weighted \(L^p\) spaces. J. Math. Anal. Appl. 410, 932–938 (2014)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Incheon National University Research Grant 2017-0087 and Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1C1B1002336).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byungsoo Moon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Adrian Constantin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, B. Persistence property and analyticity for a shallow-water model with the coriolis effect in weighted spaces. Monatsh Math (2021). https://doi.org/10.1007/s00605-021-01523-x

Download citation

Keywords

  • Shallow water
  • asymptotic model
  • Coriolis force
  • Green-Naghdi equations
  • Persistence
  • Weighted space

Mathematics Subject Classification

  • 35B10
  • 35B65
  • 35Q35