Skip to main content
Log in

Hyperuniform point sets on the sphere: probabilistic aspects

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The concept of hyperuniformity has been introduced by Torquato and Stillinger in 2003 as a notion to detect structural behaviour intermediate between crystalline order and amorphous disorder. The present paper studies a generalisation of this concept to the unit sphere. It is shown that several well studied determinantal point processes are hyperuniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, R.: On the sum of distances between \(n\) points on a sphere. Acta Math. Hung. 23(3–4), 443–448 (1972)

    Article  MathSciNet  Google Scholar 

  2. Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23), 27 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Axel, F., Gratias, D. (eds.): Beyond Quasicrystals. Springer, Berlin (1995)

    Google Scholar 

  5. Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Israel J. Math. 64(1), 25–31 (1988)

    Article  MathSciNet  Google Scholar 

  7. Brauchart, J.S., Grabner, P.J., Kusner, W.: Hyperuniform point sets on the sphere: deterministic aspects. Constr. Approx. 50(1), 45–61 (2019)

    Article  MathSciNet  Google Scholar 

  8. de Bruijn, N.G.: Quasicrystals and their Fourier transform. Indag. Math. 48, 123–152 (1986)

    Article  MathSciNet  Google Scholar 

  9. Gigante, G., Leopardi, P.: Diameter bounded equal measure partitions of Ahlfors regular metric measure spaces. Discrete Comput. Geom. 57(2), 419–430 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

  11. Krishnapur, M.: Zeros of Random Analytic Functions. Ph.D. thesis, University of California, Berkeley (2006). ArXiv:math/0607504

  12. Kuijlaars, A., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  Google Scholar 

  13. Lee, Y., Kim, W.C.: Concise Formulas for the Surface Area of the Intersection of Two Hyperspherical Caps. Tech. rep., Department of Industrial and Systems Engineering, KAIST (2014). http://ie.kaist.ac.kr/uploads/professor/tech_file/Concise+Formulas+for+the+Surface+Area+of+the+Intersection+of+Two+Hyperspherical+Caps.pdf

  14. Leopardi, P.: A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25, 309–327 (2006). (electronic)

    MathSciNet  MATH  Google Scholar 

  15. Lošdorfer Božič, A., Čopar, S.: Spherical structure factor and classification of hyperuniformity on the sphere. Phys. Rev. E 99, 032601 (2019)

    Article  Google Scholar 

  16. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics. In: Grundlehren der mathematischen Wissenschaften, vol. 52, Third enlarged edition. Springer (1966)

  17. Meyra, A.G., Zarragoicoechea, G.J., Maltz, A.L., Lomba, E., Torquato, S.: Hyperuniformity on spherical surfaces. Phys. Rev. E 100, 022107 (2019)

    Article  MathSciNet  Google Scholar 

  18. Mhaskar, H., Narcowich, F., Ward, J.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113–1130 (2001)

    Article  MathSciNet  Google Scholar 

  19. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Book  Google Scholar 

  20. Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)

    Article  MathSciNet  Google Scholar 

  21. Stepanyuk, T.A.: Hyperuniform point sets on flat Tori: deterministic and probabilistic aspects. Constr. Approx. (2020). https://arxiv.org/abs/1902.02973 (to appear)

  22. Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68(4), 041113 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the first three authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Spring 2018 semester. The authors are very grateful to two anonymous referees for their valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Grabner.

Additional information

Communicated by Karlheinz Gröchenig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Johann S. Brauchart was supported by the Lise Meitner scholarship M 2030 of the Austrian Science Foundation FWF.

Peter J. Grabner and Wöden Kusner were supported by the Austrian Science Fund FWF Project F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brauchart, J.S., Grabner, P.J., Kusner, W. et al. Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh Math 192, 763–781 (2020). https://doi.org/10.1007/s00605-020-01439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01439-y

Keywords

Mathematics Subject Classification

Navigation