Barbashin-type conditions for exponential stability of linear cocycles

Abstract

We formulate new conditions of Barbashin type for exponential stability of linear cocycles on arbitrary Banach spaces. We consider both cocycles over maps and flows. Our arguments rely on ergodic theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abu Alhalawa, M., Dragičević, D.: New conditions for (non)uniform behaviour of linear cocycles over flows. J. Math. Anal. Appl. 473, 367–381 (2019)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  3. 3.

    Barbashin, E.A.: Introduction to Stability Theory. Izd, Nauka (1967). (in Russian)

    Google Scholar 

  4. 4.

    Bataran, F., Ponce, R., Preda, C.: Discrete-time theorems for global and pointwise dichotomies of cocycles over semiflows. Monatsh. Math. 186, 579–607 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Buse, C., Megan, M., Prajea, M.-S., Preda, P.: The strong variant of a Barbashin theorem on stability of solutions for non-autonomous differential equations in Banach spaces. Integr. Equ. Oper. Theory 59, 491–500 (2007)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs 70. American Mathematical Society, Providence (1999)

    Google Scholar 

  7. 7.

    Chow, S.N., Leiva, H.: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differ. Equ. 120, 429–477 (1995)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dragičević, D.: A version of a theorem of R. Datko for stability in average. Syst. Control Lett. 96, 1–6 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dragičević, D.: Datko–Pazy conditions for nonuniform exponential stability. J. Differ. Equ. Appl. 24, 344–357 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hai, P.V.: Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows. Appl. Anal. 90, 1897–1907 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Latushkin, Y., Schnaubelt, R.: volution semigroups, translation algebra and exponential dichotomy of cocycles. J. Differ. Equ. 159, 321–369 (1999)

    Article  Google Scholar 

  12. 12.

    Kingman, J.F.C.: Sub-additive ergodic theory. Ann. Probab. 1, 883–909 (1973)

    Article  Google Scholar 

  13. 13.

    Mather, J.: Characterization of Anosov diffeomorphisms. Indag. Math. 30, 479–483 (1968)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Megan, M., Sasu, A.L., Sasu, B.: On uniform exponential stability of linear skew-product semiflows in Banach spaces. Bull. Belg. Math. Soc. Simon Stevin 9, 143–154 (2002)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Megan, M., Sasu, A.L., Sasu, B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows. Bull. Belg. Math. Soc. Simon Stevin 10, 1–21 (2003)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Pesin, Y.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv. 40, 1261–1305 (1976)

    Article  Google Scholar 

  17. 17.

    Pesin, Y.: Characteristic Ljapunov exponents, and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Popa, I.-L., Ceasu, T., Megan, M.: On exponential stability for linear discrete-time systems in Banach spaces. Comput. Math. Appl. 63, 1497–1503 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Preda, C., Preda, P., Petre, A.: On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow. Commun. Pure Appl. Anal. 8, 1637–1645 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Preda, C.: \((L^p(_+, X), L^q(_+, X)\)-admissibility and exponential dichotomy for cocycles. J. Differ. Equ. 249, 578–598 (2010)

    Article  Google Scholar 

  21. 21.

    Preda, C., Preda, P., Craciunescu, A.: Criterions for detecting the existence of the exponential dichotomies in the asymptotic behavior of the solutions of variational equations. J. Funct. Anal. 258, 729–757 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Preda, C., Preda, P., Bǎtǎran, F.: An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skew-product semiflows. J. Math. Anal. Appl. 425, 1148–1154 (2015)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Preda, C., Onofrei, O.R.: Nonuniform exponential dichotomy for linear skew-product semiflows over semiflows. Semigroup Forum 96, 241–252 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Sasu, A.L., Sasu, B.: Exponential stability for linear skew-product flows. Bull. Sci. Math. 128, 727–738 (2004)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Sasu, A.L., Sasu, B.: Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Commun. Pure Appl. Anal. 5, 551–569 (2006)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sasu, A.L., Sasu, B.: Admissibility and exponential trichotomy of dynamical systems described by skew-product flows. J. Differ. Equ. 260, 1656–1689 (2016)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Sasu, B.: Integral conditions for exponential dichotomy: a nonlinear approach. Bull. Sci. Math. 134, 235–246 (2010)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Stoica, C., Megan, M.: On uniform exponential stability for skew-evolution semiflows on Banach spaces. Nonlinear Anal. 72, 1305–1313 (2010)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Cambridge Studies in Advance Mathematics. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  30. 30.

    Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1981)

    Google Scholar 

  31. 31.

    Zhou, L., Lu, K., Zhang, W.: Roughness of tempered dichotomies for infinite-dimensional random difference equations. J. Differ. Equ. 254, 4024–4046 (2013)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referees for their constructive comments that helped me to correct some inaccuracies in the first version of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davor Dragičević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Davor Dragičević was supported in part by Croatian Science Foundation under the Project IP-2019-04-1239 and by the University of Rijeka under the Projects uniri-prirod-18-9 and uniri-prprirod-19-16, 17.15.2.2.01.

Communicated by H. Bruin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragičević, D. Barbashin-type conditions for exponential stability of linear cocycles. Monatsh Math (2020). https://doi.org/10.1007/s00605-020-01438-z

Download citation

Keywords

  • Cocycle
  • Lyapunov exponents
  • Barbashin-type theorem

Mathematics Subject Classification

  • Primary 34D20
  • 34D08