Monatshefte für Mathematik

, Volume 185, Issue 1, pp 103–131 | Cite as

Effective resolution of Diophantine equations of the form \(u_n+u_m=w p_1^{z_1} \cdots p_s^{z_s}\)

  • István Pink
  • Volker Ziegler


Let \(u_n\) be a fixed non-degenerate binary recurrence sequence with positive discriminant, w a fixed non-zero integer and \(p_1,p_2,\ldots ,p_s\) fixed, distinct prime numbers. In this paper we consider the Diophantine equation \(u_n+u_m=w p_1^{z_1} \ldots p_s^{z_s}\) and prove under mild technical restrictions effective finiteness results. In particular we give explicit upper bounds for nm and \(z_1, \ldots , z_s\). Furthermore, we provide a rather efficient algorithm to solve Diophantine equations of the described type and we demonstrate our method by an example.


Lucas sequences S-units Automatic resolution 

Mathematics Subject Classification

11D61 11B39 11Y50 


  1. 1.
    Baker, A., Davenport, H.: The equations \(3x^2-2=y^2\) and \(8x^2-7=z^2\). Q. J. Math. Oxf. Ser. 2(20), 129–137 (1969)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertók, C., Hajdu, L., Pink, I., Rábai, Z.: Linear combinations of prime powers in binary recurrence sequences. Int. J. Number Theory 13(2), 261–271 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bravo, J.J., Gómez, C.A., Luca, F.: Powers of two as sums of two \(k\)-Fibonacci numbers. Miskolc Math. Notes 17(1), 85–100 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bravo, J.J., Luca, F.: Powers of two as sums of two Lucas numbers. J. Integer Seq., 17(8):Article 14.8.3, 12 (2014)Google Scholar
  5. 5.
    Bravo, J.J., Luca, F.: On the Diophantine equation \(F_n +F_m = 2^a\). Quest. Math. 39(3), 391–400 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bugeaud, Y., Laurent, M.: Minoration effective de la distance \(p\)-adique entre puissances de nombres algébriques. J. Number Theory 61(2), 311–342 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    de Weger, B.M.M.: Solving exponential Diophantine equations using lattice basis reduction algorithms. J. Number Theory 26(3), 325–367 (1987)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Marques, D.: Powers of two as sum of two generalized Fibonacci numbers.
  10. 10.
    Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64(6), 125–180 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mignotte, M., Tzanakis, N.: Arithmetical study of recurrence sequences. Acta Arith. 57(4), 357–364 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pethö, A., de Weger, B.M.M.: Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan–Nagell equation. Math. Comput. 47(176), 713–727 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schinzel, A.: On two theorems of Gelfond and some of their applications. Acta Arith. 13:177–236 (1967/1968)Google Scholar
  14. 14.
    Smart, N.P.: The Algorithmic Resolution of Diophantine Equations, London Mathematical Society Student Texts, vol. 41. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  15. 15.
    Washington, L.C.: Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1997)Google Scholar
  16. 16.
    Yu, K.: \(p\)-adic logarithmic forms and group varieties. II. Acta Arith. 89(4), 337–378 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yu, K.: \(p\)-adic logarithmic forms and a problem of Erdős. Acta Math. 211(2), 315–382 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of DebrecenDebrecenHungary
  2. 2.University of SalzburgSalzburgAustria

Personalised recommendations