Groups in which every non-abelian subgroup is self-normalizing

  • Costantino Delizia
  • Urban Jezernik
  • Primož Moravec
  • Chiara Nicotera
Article
  • 83 Downloads

Abstract

We study groups having the property that every non-abelian subgroup is equal to its normalizer. This class of groups is closely related to an open problem posed by Berkovich. We give a full classification of finite groups having the above property. We also describe all infinite soluble groups in this class.

Keywords

Normalizer Non-abelian subgroup Self-normalizing subgroup 

Mathematics Subject Classification

20E34 20D15 20E32 

References

  1. 1.
    Berkovich, Y.: Groups of Prime Power Order, vol. 1. Walter de Gruyter GmbH & Co. KG, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Broshi, A.M.: Finite groups whose Sylow subgroups are abelian. J. Algebra 17, 74–82 (1971)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Delizia, C., Jezernik, U., Moravec, P., Nicotera, C.: Groups in which every non-cyclic subgroup contains its centralizer. J. Algebra Appl. 13, 1350154 (2014)Google Scholar
  4. 4.
    Delizia, C., Jezernik, U., Moravec, P., Nicotera, C., Parker, C.: Locally finite groups in which every non-cyclic subgroup is self-centralizing. J. Pure Appl. Algebra 221, 401–410 (2017). doi: 10.1016/j.jpaa.2016.06.015 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Delizia, C., Dietrich, H., Moravec, P., Nicotera, C.: Groups in which every non-abelian subgroup is self-centralizing. J. Algebra 462, 23–36 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dickson, L.E.: Linear Groups, with an Exposition of the Galois Field Theory. Teubner, Leipzig (1901)MATHGoogle Scholar
  7. 7.
    Fernández-Alcober, G., Legarreta, L., Tortora, A., Tota, M.: Some restrictions on normalizers or centralizers in finite \(p\)-groups. Isr. J. Math. 208, 193–217 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gilman, R., Gorenstein, D.: Finite groups with Sylow 2-subgroups of class two. I. Trans. Am. Math. Soc. 207, 1–101 (1975)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Guralnick, R.M., Malle, G., Navarro, G.: Self-normalizing Sylow subgroups. Proc. Am. Math. Soc. 132, 973–979 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)Google Scholar
  11. 11.
    Janko, Z.: Verallgemeinerung eines Satzes von B. Huppert und J. G. Thompson. Arch. Math. 12, 280–281 (1961)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer, Berlin (1996)CrossRefGoogle Scholar
  13. 13.
    Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, New York (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Suzuki, M.: On a class of doubly transitive groups. Ann. Math. 75, 105–145 (1962)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.University of SalernoFiscianoItaly
  2. 2.University of LjubljanaLjubljanaSlovenia

Personalised recommendations