Monatshefte für Mathematik

, Volume 185, Issue 1, pp 81–86 | Cite as

The class of minimax groups is countably recognizable



A class Open image in new window of groups is said to be countably recognizable if a group belongs to  Open image in new window whenever all its countable subgroups lie in Open image in new window . It is proved here that the class of minimax groups is countably recognizable.


Countably recognizable class Minimax group 

Mathematics Subject Classification

20E15 20E25 


  1. 1.
    Baer, R.: Abzählbar erkennbare gruppentheoretische Eigenschaften. Math. Z. 79, 344–363 (1962)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baer, R.: Polyminimaxgruppen. Math. Ann. 175, 1–43 (1968)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dixon, M.R., Evans, M.J., Smith, H.: Some countably recognizable classes of groups. J. Group Theory 10, 641–653 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    de Giovanni F., Trombetti M.: Countably recognizable classes of groups with restricted conjugacy classes. Int. J. Group Theory (to appear)Google Scholar
  5. 5.
    de Giovanni F., Trombetti M.: Countable recognizability and nilpotency properties of groups. Rend. Circ. Mat. Palermo. (2016). doi: 10.1007/s12215-016-0261-y
  6. 6.
    Higman, G.: Almost free groups. Proc. Lond. Math. Soc. 1, 284–290 (1951)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Obraztsov, V.N.: An embedding theorem for groups and its corollaries. Math. USSR Sb. 66, 541–553 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Phillips, R.E.: \(f\)-Systems in infinite groups. Arch. Math. (Basel) 20, 345–355 (1969)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Phillips, R.E.: Countably recognizable classes of groups. Rocky Mt. J. Math. 1, 489–497 (1971)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups. Springer, Berlin (1972)CrossRefMATHGoogle Scholar
  11. 11.
    Smith, H.: More countably recognizable classes of groups. J. Pure Appl. Algebra 213, 1320–1324 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zaicev, D.I.: Groups which satisfy a weak minimality condition. Dokl. Akad. Nauk SSSR 178, 780–782 (1968)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItaly

Personalised recommendations