2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium


The synthesis of Co-based two-dimensional (2D) metal azolate framework nanosheets (MAF-5-CoII NS) is described using a simple hydrothermal method. The product was isostructural to MAF-5 (Zn). The as-prepared MAF-5-CoII NS exhibited high surface area (1155 m2/g), purity, and crystallinity. The MAF-5-CoII NS–modified screen-printed electrode (MAF-5-CoII NS/SPE) was used for nonenzymatic detection of glucose in diluted human blood plasma (BP) samples with phosphate buffer saline (PBS, pH 7.4) and NaOH (0.1 M, pH 13.0) solutions. The MAF-5-CoII NS nanozyme displayed good redox activity in both neutral and alkaline media with the formation of CoII/CoIII redox pair, which induced the catalytic oxidation of glucose. Under the optimized detection potential, the sensor presented a chronoamperometric current response for the oxidation of glucose with two wide concentration ranges in PBS-diluted (62.80 to 180 μM and 305 to 8055 μM) and NaOH-diluted (58.90 to 117.6 μM and 180 to 10,055 μM) BP samples, which were within the limit of blood glucose levels of diabetic patients before (4.4–7.2 mM) and after (10 mM) meals (recommended by the American Diabetes Association). The sensor has a limit of detection of ca. 0.25 and 0.05 μM, respectively, and maximum sensitivity of ca. 36.55 and 1361.65 mA/cm2/mM, respectively, in PBS- and NaOH-diluted BP samples. The sensor also displayed excellent stability in the neutral and alkaline media due to the existence of hydrophobic linkers (2-ethyl imidazole) in the MAF-5-CoII NS, good repeatability and reproducibility, and interference-free signals. Thus, MAF-5-CoII NS is a promising nanozyme for the development of the disposable type of sensor for glucose detection in human body fluids.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Clark LC, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Rahman MM, Ahammad AJS, Jin J-H, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Hwang DW, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal Chim Acta 1033:1–34

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal Chem 85:11643–11649

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Zhao M, Gao Y, Sun J, Gao F (2015) Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem 87:2615–2622

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86:752–757

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Tee SY, Teng CP, Ye E (2017) Metal nanostructures for non-enzymatic glucose sensing. Mater Sci Eng C 70:1018–1030

    CAS  Article  Google Scholar 

  10. 10.

    Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3350

    CAS  Article  Google Scholar 

  11. 11.

    Wang R, Liang X, Liu H et al (2018) Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles. Microchim Acta 185:1–7

    Article  CAS  Google Scholar 

  12. 12.

    Ansari SA, Ahmed A, Ferdousi FK, Salam MA, Shaikh AA, Barai HR, Lopa NS, Rahman MM (2019) Conducting poly(aniline blue)-gold nanoparticles composite modified fluorine-doped tin oxide electrode for sensitive and non-enzymatic electrochemical detection of glucose. J Electroanal Chem 850:113394

    CAS  Article  Google Scholar 

  13. 13.

    Xu GR, Ge C, Liu D, Jin L, Li YC, Zhang TH, Rahman MM, Li XB, Kim W (2019) In-situ electrochemical deposition of dendritic Cu-Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. J Electroanal Chem 847:113177

    CAS  Article  Google Scholar 

  14. 14.

    Yan X, Gu Y, Li C, Zheng B, Li Y, Zhang T, Zhang Z, Yang M (2018) A non-enzymatic glucose sensor based on the CuS nanoflakes-reduced graphene oxide nanocomposite. Anal Methods 10:381–388

    CAS  Article  Google Scholar 

  15. 15.

    Liu Q, Zhong H, Chen M, Zhao C, Liu Y, Xi F, Luo T (2020) Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv 10:33739–33746

    CAS  Article  Google Scholar 

  16. 16.

    Lopa NS, Rahman MM, Ahmed F, Sutradhar SC, Ryu T, Kim W (2018) A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. J Electroanal Chem 822:43–49

    CAS  Article  Google Scholar 

  17. 17.

    Lopa NS, Rahman MM, Ahmed F, Ryu T, Lei J, Choi I, Kim DH, Lee YH, Kim W (2019) A chemically and electrochemically stable, redox-active and highly sensitive metal azolate framework for non-enzymatic electrochemical detection of glucose. J Electroanal Chem 840:263–271

    CAS  Article  Google Scholar 

  18. 18.

    Shahrokhian S, Ezzati M, Hosseini H (2020) Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 201:120696

    Article  CAS  Google Scholar 

  19. 19.

    Zhu X, Yuan S, Ju Y (2019) Water splitting-assisted electrocatalytic oxidation of glucose with a metal−organic framework for wearable nonenzymatic perspiration sensing. Anal Chem 91:10764–10771

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Adeel M, Rahman MM, Caligiuri I, Canzonieri V, Rizzolio F, Daniele S (2020) Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 165:112331

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Chinnadayyala SR, Park I, Cho S (2018) Nonenzymatic determination of glucose at near neutral pH values based on the use of Nafion and platinum black coated microneedle electrode array. Microchim Acta 185:250

    Article  CAS  Google Scholar 

  22. 22.

    Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    CAS  Article  Google Scholar 

  23. 23.

    Mei H, Sheng Q, Wu H, Zhang X, Wang S, Xia Q (2015) Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support. Microchim Acta 182:2395–2401

    CAS  Article  Google Scholar 

  24. 24.

    Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060

    CAS  Article  Google Scholar 

  25. 25.

    Muthuchamy N, Gopalan A, Lee KP (2018) Highly selective non-enzymatic electrochemical sensor based on a titanium dioxide nanowire-poly(3-aminophenyl boronic acid)-gold nanoparticle ternary nanocomposite. RSC Adv 8:2138–2147

    CAS  Article  Google Scholar 

  26. 26.

    Branagan D, Breslin CB (2019) Electrochemical detection of glucose at physiological pH using gold nanoparticles deposited on carbon nanotubes. Sensors Actuators B Chem 282:490–499

    CAS  Article  Google Scholar 

  27. 27.

    Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186:1–15

    CAS  Article  Google Scholar 

  28. 28.

    Lopa NS, Rahman MM, Ahmed F, Chandra Sutradhar S, Ryu T, Kim W (2018) A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochim Acta 274:49–56

    CAS  Article  Google Scholar 

  29. 29.

    Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR (2013) A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens Bioelectron 42:426–429

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Peng Z, Jiang Z, Huang X, Li Y (2016) A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal-organic framework composite modified glassy carbon electrode. RSC Adv 6:13742–13748

    CAS  Article  Google Scholar 

  31. 31.

    Yuan B, Zhang R, Jiao X, Li J, Shi H, Zhang D (2014) Amperometric determination of reduced glutathione with a new co-based metal-organic coordination polymer modified electrode. Electrochem Commun 40:92–95

    CAS  Article  Google Scholar 

  32. 32.

    Sun Y, Li Y, Wang N, Xu QQ, Xu L, Lin M (2018) Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose. Electroanalysis 30:474–478

    CAS  Article  Google Scholar 

  33. 33.

    Bhadra BN, Seo PW, Khan NA, Jhung SH (2016) Hydrophobic cobalt-ethylimidazolate frameworks: phase-pure syntheses and possible application in cleaning of contaminated water. Inorg Chem 55:11362–11371

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zhang JP, Zhang YB, Lin JB (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Zhu AX, Lin RB, Qi XL, Liu Y, Lin YY, Zhang JP, Chen XM (2012) Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH) 2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: efficient syntheses and properties. Microporous Mesoporous Mater 157:42–49

    CAS  Article  Google Scholar 

  36. 36.

    Wang M, Han J, Hu Y, Guo R (2017) Mesoporous C, N-codoped TiO2 hybrid shells with enhanced visible light photocatalytic performance. RSC Adv 7:15513–15520

    CAS  Article  Google Scholar 

  37. 37.

    Li H, Gan S, Wang H, Han D, Niu L (2015) Intercorrelated superhybrid of AgBr supported on graphitic-C3N4 -decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv Mater 27:6906–6913

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J Mater Chem A 5:7144–7152

    CAS  Article  Google Scholar 

  39. 39.

    Kwon HT, Jeong HK, Lee AS, An HS, Lee JS (2015) Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J Am Chem Soc 137:12304–12311

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G (2017) Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5:1094–1102

    CAS  Article  Google Scholar 

  41. 41.

    Tomanin PP, Cherepanov PV, Besford QA, Christofferson AJ, Amodio A, McConville CF, Yarovsky I, Caruso F, Cavalieri F (2018) Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl Mater Interfaces 10:42786–42795

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Nacef M, Chelaghmia ML, Affoune AM, Pontie M (2018) Electrochemical investigation of glucose on a highly sensitive nickel-copper modified pencil graphite electrode. Electroanalysis 31:113–120

    Article  CAS  Google Scholar 

  43. 43.

    Ko CY, Huang JH, Raina S, Kang WP (2013) A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds. Analyst 138:3201–3208

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 378:31–40

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references


This work was financially supported by SPIN-Supporting Principal Investigators, Ca’Foscari University of Venice, Italy.

Author information



Corresponding authors

Correspondence to Alberto Vomiero or Flavio Rizzolio or Md. Mahbubur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(DOCX 426 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adeel, M., Canzonieri, V., Daniele, S. et al. 2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium. Microchim Acta 188, 77 (2021). https://doi.org/10.1007/s00604-021-04737-w

Download citation


  • Metal azolate framework
  • Glucose detection
  • Chronoamperometry
  • Human blood plasma
  • Neutral and alkaline conditions