Ionic liquid([C12mim][PF6])-assisted synthesis of TiO2 /Ti2O (PO4)2 nanosheets and the chemoresistive gas sensing of trimethylamine

Abstract

The architecture of PO43− modified 2D TiO2 nanosheets was constructed by ionic liquids (ILs)-assisted hydrothermal method. The nanosheet structure can be regulated by the addition of different amount of ionic liquid. Using the composite nanosheets  a chemoresistive gas sensor was prepared for trimethylamine (TMA) detection. Most reported TMA sensors need to be operated at a relatively high operating temperature, but in this paper, the as-synthesized PO43−-modified 2D TiO2/Ti2O(PO4)2 nanosheet sensor has high response (S = 87.46), short response time (14.6 s), and good reproducibility to 100 ppm TMA gas, when the temperature is 170 °C. In contrast to the single-phase TiO2 sensor, the gas-sensing property of the composite one is obviously enhanced. Moreover, its response shows excellent linear relationship with TMA concentration from 0.2 to 500 ppm, and a detection limit of 0.2 ppm. The TMA detection mechanism was investigated by analyzing the changes of the surface adsorption oxygen content by XPS and gaseous products using gas chromatography after the sensor was in contact with TMA.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Wang P, Zheng ZK, Cheng XL, Sui LL, Gao S, Zhang XF, Xu YM, Zhao H, Huo LH (2017) Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness. J Mater Chem A 5:19846–19856

    CAS  Article  Google Scholar 

  2. 2.

    Zhu PH, Wang YC, Ma P, Li SS, Fan FQ, Cui K, Ge SG, Zhang Y, Yu JH (2019) Low-power and high-performance trimethylamine gas sensor based on n-n heterojunction microbelts of perylene diimide/CdS. Anal Chem 91:5591–5598

    CAS  Article  Google Scholar 

  3. 3.

    Kim KM, Choi K, Jeong HM, Kim HJ, Kim HR, Lee JH (2012) Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres. Sensors Actuators B 166-167:733–738

    CAS  Article  Google Scholar 

  4. 4.

    Zhang WH, Zhang WD (2008) Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sensors Actuators B 134:403–408

    CAS  Article  Google Scholar 

  5. 5.

    Cho YH, Kang YC, Lee JH (2013) Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis. Sensors Actuators B 176:971–977

    CAS  Article  Google Scholar 

  6. 6.

    Lou Z, Li F, Deng JN, Wang LL, Zhang T (2013) Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl Mater Interfaces 5:12310–12316

    CAS  Article  Google Scholar 

  7. 7.

    Na CW, Park SY, Lee JH (2012) Punched ZnO nanobelt networks for highly sensitive gas sensors. Sensors Actuators B 174:495–499

    CAS  Article  Google Scholar 

  8. 8.

    Meng D, Liu DY, Wang GS, Shen YB, San XG, Si JP, Meng FL (2019) In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl Surf Sci 463:348–356

    CAS  Article  Google Scholar 

  9. 9.

    Li F, Gao X, Wang R, Zhang T, Lu GY, Barsan N (2016) Design of core- shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine. ACS Appl Mater Interfaces 8:19799–19806

    CAS  Article  Google Scholar 

  10. 10.

    Lee CS, Kim D, Lee JH (2013) Selective and sensitive detection of trimethylamine using ZnO–In2O3 composite nanofibers. Sensors Actuators B 181:463–470

    CAS  Article  Google Scholar 

  11. 11.

    Zhang FD, Dong X, Cheng XL, Xu YM, Zhang XF, Huo LH (2019) Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Appl Mater Interfaces 11:11755–11762

    CAS  Article  Google Scholar 

  12. 12.

    Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase-a review. Chem Eng J 334:2408–2439

    CAS  Article  Google Scholar 

  13. 13.

    Li HB, Li J, Zhu YY, Xie WY, Shao R, Yao XX, Gao AQ, Yin YD (2018) Cd2+-doped amorphous TiO2 hollow spheres for robust and ultrasensitive photoelectrochemical sensing of hydrogen sulfide. Anal Chem 90:5496–5502

    CAS  Article  Google Scholar 

  14. 14.

    Malik R, Tomer VK, Joshi N, Dankwort T, Lin LW, Kienle L (2018) Au-TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interfaces 10:34087–34097

    CAS  Article  Google Scholar 

  15. 15.

    Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C (2019) Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sensors Actuators B 279:69–78

    CAS  Article  Google Scholar 

  16. 16.

    Haidry AA, Xie LJ, Wang Z, Zavabeti A, Li Z, Plecenik T, Gregor M, Roch T, Plecenik A (2019) Remarkable improvement in hydrogen sensing characteristics with Pt/TiO2 interface control. ACS Sens 4:2997–3006

    CAS  Article  Google Scholar 

  17. 17.

    Chen XX, Shen YB, Zhou PF, Zhao SK, Zhong XX, Li TT, Han C, Wei DZ, Meng D (2019) NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sensors Actuators B 280:151–161

    CAS  Article  Google Scholar 

  18. 18.

    Shen SK, Zhang XF, Cheng XL, Xu YM, Gao S, Zhao H, Zhou X, Huo LH (2019) Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl Nano Mater 2:8016–8026

    CAS  Article  Google Scholar 

  19. 19.

    Gao R, Gao S, Wang P, Xu YM, Zhang XF, Cheng XL, Zhou X, Major Z, Zhu HY, Huo LH (2020) Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors Actuators B 303:127085

    CAS  Article  Google Scholar 

  20. 20.

    Yu JC, Zhang LZ, Zheng Z, Zhao JC (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280–2286

    CAS  Article  Google Scholar 

  21. 21.

    Jing LQ, Zhou J, Durrant JR, Tang JW, Liu DN, Fu HG (2012) Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy Environ Sci 5:6552–6558

    CAS  Article  Google Scholar 

  22. 22.

    Li ZH, Li JC, Song LL, Gong HQ, Niu Q (2013) Ionic liquid-assisted synthesis of WO3 particles with enhanced gas sensing properties. J Mater Chem A 1:15377–15382

    CAS  Article  Google Scholar 

  23. 23.

    Chen Y, Li WZ, Wang JY, Gan YL, Liu L, Ju MT (2016) Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl Catal B 191:94–105

    CAS  Article  Google Scholar 

  24. 24.

    Paszkiewicz M, Łuczak J, Lisowski W, Patyk P, Adriana ZM (2016) The ILs-assisted solvothermal synthesis of TiO2 spheres: the effect ofionic liquids on morphology and photoactivity of TiO2. Appl Catal B 184:223–237

    CAS  Article  Google Scholar 

  25. 25.

    Sui LL, Yu TT, Zhao D, Cheng XL, Zhang XF, Wang P, Xu YM, Gao S, Zhao H, Gao Y, Huo LH (2020) In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J Hazard Mater 385:121570

    CAS  Article  Google Scholar 

  26. 26.

    Zhao D, Zhang XF, Sui LL, Wang WJ, Zhou X, Cheng XL, Gao S, Xu YM, Huo LH (2020) C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis. Sensors Actuators B 312:127942

    CAS  Article  Google Scholar 

  27. 27.

    Zhang WS, Fan Y, Yuan TW, Lu B, Liu YM, Li ZX, Li GJ, Cheng ZX, Xu JQ (2020) Ultrafine tungsten oxide nanowires: synthesis and highly selective acetone sensing and mechanism analysis. ACS Appl Mater Interfaces 12:3755–3763

    CAS  Article  Google Scholar 

  28. 28.

    Xu JQ, Han JJ, Zhang Y, Sun YA, Xie B (2008) Studies on alcohol sensing mechanism of ZnO based gas sensors. Sensors Actuators B 132:334–339

    CAS  Article  Google Scholar 

  29. 29.

    Li YY, Li K, Luo YY, Liu B, Wang H, Gao L, Duan GT (2020) Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ ZIF-67 and their gas-sensing performances for trimethylamine. Sensors Actuators B 308:127657

    CAS  Article  Google Scholar 

  30. 30.

    Meng D, Si JP, Wang MY, Wang GS, Shen YB, San XG, Meng FL (2020) In-situ growth of V2O5 flower-like structures on ceramic tubes and their trimethylamine sensing properties. Chin Chem Lett 31:2133–2136

    CAS  Article  Google Scholar 

  31. 31.

    Gao X, Zhang T (2018) An overview: facet-dependent metal oxide semiconductor gas sensors. Sensors Actuators B 277:604–633

    CAS  Article  Google Scholar 

  32. 32.

    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21771060, 61271126, 21305033, and 51802167), the International Science & Technology Cooperation Program of China (2016YFE0115100), Natural Science Foundation of Heilongjiang Province (QC2018015), Heilongjiang Educational Department (RCYJTD201903, 135409208), Heilongjiang Touyan Innovation Team Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yingming Xu or Lihua Huo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2.37 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, X., Wang, W. et al. Ionic liquid([C12mim][PF6])-assisted synthesis of TiO2 /Ti2O (PO4)2 nanosheets and the chemoresistive gas sensing of trimethylamine. Microchim Acta 188, 74 (2021). https://doi.org/10.1007/s00604-021-04734-z

Download citation

Keywords

  • TiO2 nanosheets
  • TMA gas sensor
  • PO4 3− modification
  • Detection mechanism investigation